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Abstract

The entry of meteoroids in the Earth's atmosphere is characterized by high velocities,
reaching 72 km/s. At such velocities, extremely high temperatures are reached and the
meteoroid is surrounded by a region of plasma, dense enough to be detected by ground-
based radio stations. The Belgian RAdio Meteor Stations (BRAMS) network is a unique
experiment based on 30 receivers spread all over Belgium to collect and standardize
meteor observations. Correlating the physical parameters of the incoming meteoroid to
the re�ected radio signal requires a simulation of the plasma �ow that develops around
the hypersonic body and into its trail.

Detailed chemistry models are usually too computationally expensive to be strongly
coupled to �ow solvers. This project aims at simulating the ionized trail past a meteoroid
by coupling standard �ow solvers to a lightweight Lagrangian solver developed at VKI,
allowing to introduce a posteriori an arbitrarily complex chemistry into the model.

The �rst and main part of this work deals with the extension of the existing VKI
Lagrangian solver capabilities, to include mass and energy di�usion mechanisms. The
developed code is veri�ed against simple testcases. Simulations of meteors at high altitute
are then performed using the Direct Simulation Monte Carlo (DSMC) method, and a
knowledge of the �uid dynamics behavior of the trail is built. Since those simulations
are de�cient from the chemical point of view, the Lagrangian solver is applied in order to
introduce a detailed chemistry, including in particular recombination reactions for free
electrons. This provides a much more reliable estimation of the free electrons density in
the meteor trail with respect to the initial DSMC simulations. Finally, the Lagrangian
solver is applied to the study of very long trails, providing a map of free electrons up
to a distance of 2 km from the meteoroid. The tool and methodology developed in this
work allow to study the properties of meteor trails in a computationally e�cient way, up
to very big lengths. Maps of free electrons obtained in this work can be correlated to
experimental signals of the BRAMS network by use of an electromagnetic solver.

A number of di�erent �elds may bene�t from the developed code. Possible applica-
tions include the study of blackout phenomena occurring during the reentry of space-
crafts, determination of the electrons recombination and energy levels population in the
plume of ion thrusters, characterization of armospheric entry of space debris and may
even be applied to the radio detection of ICBM missiles.
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Chapter 1

Introduction

�I've seen it rainin' �re in the sky�
John Denver

Rocky Mountain High

Every year, around the 10th of August, the summer night sky �lls with meteors. Catholic
culture depicts them as the tears of saint Lawrence, burned alive during the Roman
empire. Others say shooting stars are the souls of new babies, traveling towards the sky
to reach the Earth.

Figure 1.1: Visualization of a meteor.

Falling stars recently became a research interest of the von Karman Institute for
Fluid Dynamics, not for their astonishing beauty, but because of the scienti�c knowledge
they carry with them. In fact, meteors originate from the atmospheric entry at very
high velocities of debris originating from comets or asteroids, referred to as meteoroids.
Developing methods for studying meteors allows to discover precious information over
the composition and the characteristics of their parent bodies, without need for space
expeditions.

The quantity of such meteoroids daily entering the Earth's atmosphere amounts to
around 50 tons, of which the vast majority is totally destroyed even before they can reach
the ground, due to their very small size (µm to m in diameter) and extremely high �ight
velocity (up to 72 km/s).

The study and characterization of the meteoric phenomenon is of big importance not
only for astronomy, but for aerospace engineering as well, since the physical phenomena
experienced by meteoroids during their atmospheric entry are the same that characterize

1



2 Introduction

the reentry of aerospace vehicles and space debris such as satellites at their end of life.
Meteors provide �ight data at zero cost, for conditions that are even more severe than
those encountered by spacecrafts (whose typical speed ranges from 5 to 14 km/s): this
allows us to extend the validity range of currently employed methods.

1.1 Radio observation of meteor trails

As anticipated, the meteor phenomena is generated by the atmospheric entry at very
high velocity of bodies coming from space, whose origin is well explained by Murad and
Williams in [1] and by Ceplecha et al. in [2]. During the atmospheric entry, the air �ow
is strongly heated and the temperature reaches values in the order of 100 000 K. At such
temperatures, the collisions among air molecules are so strong that chemical reactions
take place. In particular, ionizing reactions produce a number of free electrons, that are
released in the meteor trail.

Chemical reactions among air species are not the only source of free electrons, in fact
at the extremely high temperatures met by the meteoroid, its surface starts melting and
vaporizing and a quantity of ablated species mix with the �uid �ow, starting reacting as
well. This e�ect is known to produce a signi�cant number of electrons since the ionization
energy of species that compose the meteoroid is much lower than that of air species. Fig.
1.2 sketches the main phenomena involved in this atmospheric entry phase.

dissociation
ablation

diffusion

recombination

O2 
 

N2

N O
NO

e
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N2
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e

e

e

e
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Figure 1.2: Sketch of phenomena experienced by a meteoroid during its entry.

One of the techniques used to detect meteors consists in exploiting the scattering
process that radio waves experience when they cross ionized regions of space (Fig. 1.4).
In this technique, a transmitter antenna radiates a signal in the MHz range and when a
meteor passes in the surrounding area, the signal is re�ected by the electrons in the trail
and can be gathered by a network of receiver antennas, as reviewed by Wislez in [3].

The Belgian Institute for Space Aeronomy is currently taking part in the study of
meteors via radio observations, with the BRAMS project [4], a unique network of 30
ground-based stations, aiming at collecting and standardize meteor observations. A
large number of meteoric echoes is collected each day (in average, one observation per
minute over Belgium), and by crossing the data from various receivers it is possible to
reconstruct the trajectory of the falling body [5].
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TRANSMITTER

RECEIVER

Reflected signal

Figure 1.3: Scheme of the radio forward scatter-
ing technique for meteor detection.

Meteor echoes

Figure 1.4: Example of signal from
a BRAMS network station.

While the velocity and trajectory of the meteoroid can be directly reconstructed
from the received signal, inferring characteristics such as the meteoroid's mass and size
additionally requires an accurate modeling of the electron density in the trail. This
process is composed by two steps:

i) the amount of free electrons in the trail needs to be accurately described as a function
of the meteoroid size, velocity and composition, as well as altitude;

ii) the scattering of the radio wave in the ionized region has to be computed.

Current research in this �eld relies on strong approximations. First of all, the �ow-
�eld is not modeled: a global e�ect of the interaction between ablated species and air
constituents is given by the ionization coe�cient β [6], following a 0-D approach. The
number density of free electrons ne is then computed as a function of �ight velocity V∞,
ablation rate ṁ and ionization coe�cient: ne = f(V∞, ṁ, β), as shown by Baggaley in
[7]. This project deals with providing a more sound modeling of the electrons number
density, by providing a complete �uid dynamic description.

A second strong simpli�cation is employed in the current literature regarding the
interaction of the radio wave with the meteor trail. Given the electron density and the
corresponding parameter plasma frequency, see Bellan [8], the trail is divided in two
regions where di�erent scattering mechanisms apply: the underdense and overdense trail
types. Di�erent simpli�cations are introduced for the two families, namely assuming a
given cross-sectional pro�le for the electrons number density (for underdense meteors) or
a total re�ection of the incoming radio wave in case of overdense meteors, see [9, 10, 11].
Those models lead to a qualitative explanation of the shape of the re�ected signal, and
could be improved by numerical simulations once the concentration of free electrons is
accurately known.

Regarding the description of the free electrons, the ablation of meteoroid constituents
plays a central role: using spectroscopic measurements [12] and analyzing meteorites
retrieved on the ground, the composition is found to be rich in metals such as Fe, Mg and
Na, whose ionization energy is much lower than that of air species. Chemical reactions



4 Introduction

involving those elements are thus to be taken into account if an accurate description of
free electrons is sought [13, 14]. Despite the importance of ablation, its e�ects will not be
considered in this project: the tools developed will be �exible enough to consider ablated
species, once more details and accurate chemical rates will be available.

1.2 Numerical simulation of reactive rare�ed �ows

Numerical e�orts are well under way at VKI for modeling the interaction of meteors with
the atmosphere, see Bariselli [15] and Dias [16]. Those e�orts are focused respectively
in the rare�ed and continuum regime. In fact, during its atmospheric entry, a meteor
crosses two di�erent �uid dynamics regimes. The �rst part of the trajectory is character-
ized by a large Knudsen number, ratio of the mean free path for the gas molecules and
a characteristic length (such as the meteor diameter), the atmosphere is rare�ed and the
�ow�eld can not be obtained using the Navier-Stokes equations [17]. Thus, approaches
based on the solution of the Boltzmann equation are required, the most common exam-
ple being the Direct Simulation Monte Carlo (DSMC) method introduced by Bird [18].
Another approach useful in this regime is the Particle In Cell (PIC) method, applied to
meteors by Dyrud et al. [19], speci�cally designed for taking into account electromag-
netic �elds in the �ow, but neglecting the e�ect of collisions among particles. At lower
altitudes the Knudsen number decreases due to higher atmospheric densities, allowing
standard hypersonic CFD simulations to be employed. The challenge of computing the
free electrons concentration in the meteor's trail is twofold:

• Detailed chemical mechanisms are required, greatly increasing the computational
cost of numerical simulations;

• Simulations are to be performed in two di�erent regimes, where di�erent governing
equations apply.

Unfortunately, those challenges prove to be overwhelming for standard �uid dynamics
methods. In fact, while they provide reliable tools for studying the �ow�eld around the
meteoroid, DSMC and CFD su�er from di�erent limitations when applied to the study
of meteoroid trails.

DSMC methods typically su�er from an algorithmic limitation that makes them un-
able to compute recombination reactions. Free electrons produced by energic collisions
di�use in the surroundings but never recombine with positive ions. While this is not
an issue for the the study of ionized �ows around hypersonic bodies, this is a problem
in elongated recombining trails, in that a DSMC simulation would predict a number of
electrons which is constant over each trail cross section, at whatever distance, which is
not the case in reality.

On the other hand, CFD methods become extremely heavy when a big number of
reactions is to be taken into account. In fact, for each chemical species introduced, one
mass equation has to be added to the system to be solved. Since the number of species
is very high (air brings 11 species to the balance and if ablation is to be modeled the
number of species increases quickly) the system becomes prohibitively large.
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Moreover, the domain size is extremely extended (of the order of 1 km), posing addi-
tional troubles to classical numerical simulations. The answer to the exposed problems
will be detailed in the next section.

1.3 Aim and structure of this work

This work aims at providing a numerical methodology for studying the free electrons
concentration in meteor trails. The procedure that will be formulated aims at being
sound from the �uid dynamics point of view, which constitutes a big improvement over
the current state of the art.

The answer of this work to the numerical di�culties encountered by classical �uid
dynamics solvers will lie in the development of a particular Lagrangian solver, whose
lightweight structure will allow to easily introduce detailed chemical models.

The aim of this work is thus twofold:

1. Development of a Lagrangian �ow solver for detailed chemistry, plus its veri�cation;

2. Development of a methodology for modeling the electron concentration �eld in
meteor trails, together with the analysis of a chosen testcase.

First of all the governing equations describing chemically reacting and rare�ed �ows
will be introduced in Chapter 2, together with the physico-chemical models for high
enthalpy �ows (Chapter 3). Attention will then switch to numerical methods: in Chapter
4, the Direct Simulation Monte Carlo method will be introduced, while Chapter 5, deals
with the main numerical contribution of this work: the creation of a Lagrangian solver
able to treat detailed chemical models. Finally, in Chapter 6 a methodology for analyzing
meteor trails is suggested and applied to a meteor testcase, leading to a map of free
electrons up to 1 km of distance from the meteoroid.
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Chapter 2

Governing equations

The year 1822 is particularly important to �uid dynamicists. One could state that the
modern �uid dynamics was born in this year, when a famous contribution was presented
to the French Académie royale des Sciences. This contribution is the celebrated �Mémoire

sur les lois du mouvement des �uides� by Claude-Louis Navier, where for the �rst time
a realistic mathematical description for viscous �ows is presented.

This contribution constitutes a giant leap with respect to the previous inviscid mod-
eling of �uid �ows, so big that most engineers and scientists have the feeling that �uid
dynamics is now complete. Since the settling of the Navier-stokes equations, many believe
that �this is the whole story�. However, this is not the case.

Half a century passes, and the next big step knocks on the door of �uid dynamics:
this time it's Ludwig Boltzmann, whose equation brings the �ow modeling to the next
level. In fact, the Navier-Stokes equations su�er from a serious disadvantage: they lose
their validity when the �ow is highly out of equilibrium. High Knudsen number �ows
such as rare�ed gases or �ows inside small-scale devices are probably the most famous
cases where this breakdown arises.

Many more derivations were proposed in the following years and important milestones
were set, one of them being the Vlasov equation for plasma �ows for example.

This chapter is dedicated to the mathematical models that will be used in this work
for describing the ionized �ow developing in rare�ed meteor trails. While the abundant
presence of free electrons in meteor trails suggests the Vlasov equation as most logical
framework, the characteristics of meteor �ows are such that they can be classi�ed as
unmagnetized plasmas. As such, the main issue to be taken into account for modeling
high altitude meteoric �ows is non-equilibrium and consequently this chapter will focus
on the Boltzmann equation, together with their �uid-�ow counterpart: the Maxwell
transfer equations, generalization of the Navier-Stokes equations.

2.1 From microscopic to macroscopic description

As is well known, the physical nature of �uids is non continuum: �uids are composed
by a �nite number of atoms and molecules, exchanging energy and momentum through

7



8 Governing equations

collisions. A description of the physics at thismicroscopic scale needs to take into account
intermolecular potentials and mechanisms of internal excitation of molecules and atoms.
However, �uids have been described since centuries starting from global conservation
equations (such as the Navier-Stokes equations): description was thus performed at a
macroscopic scale, and it proved to be successful in most circumstances.

It is now clear that the behavior of a �uid at the macroscopic scale depends on
the collective behavior of the particles that constitute it. Probably, the beauty of the
modern �uid dynamics theory lies in the fact that a link between those two microscopic
and macroscopic words is now established (even though a rigorous mathematical proof
is still missing). This link is settled in the elegant framework of kinetic theory.

In fact, the microscopic world is the starting point of the Boltzmann equation, that
describes how a population of particles evolves in time, from the statistical point of view.
From this information, it is possible to obtain all the �uid dynamic information that �uid
dynamicists use in their daily practice: velocity �eld, temperature, density and so on.

Of course, dealing with global conservation equations is easier than approaching the
Boltzmann equation, let's thus start by the reason that leads engineers towards the
microscopic approach as the degree of rarefaction of a �ow increases.

Knudsen number and breakdown of Navier-Stokes equations

An indication of the degree of rarefaction of a �uid �ow is provided by the Knudsen num-
ber Kn, de�ned as the ratio of molecular mean free path λ and characteristic dimension
L of the �ow:1

Kn =
λ

L
(2.1)

Flows characterized by Knudsen numbers much smaller than unity are said to be in
the continuum regime and the Navier-Stokes equations usually hold. The threshold is
typically set to the value Kn ≈ 0.01. On the other extreme, Knudsen numbers larger than
Kn ≈ 10 characterize the so called molecular regime, where collisions among molecules
are unlikely to happen due to the very large mean free path. In the middle, �ows partially
deviate from the Navier-Stokes prediction: from Kn ≈ 0.01 to 0.1 there is the slip regime,
while the range from Kn ≈ 0.1 to 10 is named transition regime.

Of course, such description is quite coarse and the continuummodel may break locally :
it is possible to de�ne the Knudsen number via the local gradients of a �ow property Q:

Kn =
λ

Q

∣∣∣∣dQdx
∣∣∣∣ (2.2)

In the current work, a meteoroid with a diameter of 1 cm will be simulated at the
altitude of 70 km. At such conditions, the Knudsen number is found to be approximately
Kn = 0.1 and the �ow is thus located at the border between the slip and the transition
regimes. For this reason, a description based on the continuum should not be trusted,
and a microscopic approach is required.

1In case of a space vehicle entering the rare�ed layers of the atmosphere, this dimension may be taken

as the vehicle diameter.
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A bridge from microscopic to macroscopic world

The statistical treatment of �uid �ows from the microscopic point of view is based on
the de�nition of the velocity distribution function f(x, c, t), describing the probability
that a particle with velocity between c and c+ dc is located at a position between x and
x+ dx at the time t.

Macroscopic �ow quantities are readily obtained by integrating over the velocity
space. The value of the �ow density, momentum and energy for a pure gas would read:

ρ(x, t) =
∫
mf(x, c, t) dc

ρu(x, t) =
∫
m c f(x, c, t) dc

E(x, t) =
∫

1
2 m |c|

2f(x, c, t) dc

(2.3)

where m is the mass of the particles and the integral is performed over the three com-
ponents of the velocity c. For the case of a multispecies gas such as air, the same result
is obtained by summing over the species:

ρ(x, t) =
∑

i

∫
mi fi(x, ci, t) dci

ρu(x, t) =
∑

i

∫
mi ci fi(x, ci, t) dci

E(x, t) =
∑

i

∫
1
2 mi |ci|2fi(x, ci, t) dci

(2.4)

The expression for other macroscopic quantities can be found multiplying the distribution
function by di�erent terms, see Giovangigli [20]. This multiplication process can be seen
as a weighting of the distribution function, and the integral of the obtained quantity is
referred to as a moment of the distribution function. The energy for example is found as
an average of the particles kinetic energy 1

2mi |ci|2.
This theory thus provides the link between the microscopic and the macroscopic

worlds. The same treatment can be employed to obtain global conservation equations
starting from microscopic equations such as the Boltzmann equation, as will be discussed
in the next chapters.

2.2 The Boltzmann equation

The celebrated (and feared by most engineers) Boltzmann equation describes the evolu-
tion in time of the distribution function fi(x, ci, t). For a multispecies gas mixture, the
Boltzmann equation reads:

∂fi
∂t

+ ci ·∇x fi +
Fi
mi
·∇ci fi = Ji with i ∈ S (2.5)

where Fi is the external force acting on the particle, such as gravity or Lorentz force
in case of charged particles. From an intuitive point of view, its meaning is clear: the
time evolution of the distribution function at a given position (the �rst term) is regulated
by an advection term (the second term) and by a term linked to the work of external
forces Fi (third term) and �nally by one more term Ji taking into account the e�ect of
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collisions among particles. The problem is that the term Ji, named collision integral,
has an integral nature and the Boltzmann equation thus becomes an integro-di�erential

equation: 
Ji =

∑
j∈S

Jij(fi, fj)

Jij(fi, fj) =

∫ (
f ′if
′
j − fifj

)
|ci − cj |σijdωdcj

(2.6)

the meaning of the terms being explained by Cercignani for example in [21].
Its integro-di�erential nature makes the Boltzmann equation very hard to approach and
its direct solution can be nowadays obtained only for simple cases.

However, due to its capability of describing both continuum and rare�ed �ows, the
Boltzmann equation results very appealing and indirect numerical strategies for its solu-
tion have been developed, such as the Direct Simulation Monte Carlo method.

2.3 Maxwell transfer equations

Just as macroscopic �ow properties can be obtained by computing moments of the distri-
bution function, conservation equations can be obtained by computing moments of the
Boltzmann equation. The resulting set of equations is often called the Maxwell transfer

equations and is a set of PDEs expressing the mass, momentum and energy conserva-
tion. Being obtained from kinetic theory, those equations are valid both in and out of
thermodynamic equilibrium.

∂tρi + ∂x · (ρiu) + ∂x · (ρiV d
i ) = ω̇i

∂t (ρu) + ∂x · (ρu⊗ u) + ∂x ·Π = nqE + j ×B
∂t (ρe) + ∂x · (ρeu) + ∂x · q + Π : ∂xu = j · (E + u×B)

(2.7)

where the terms at the right hand side include the e�ect of the electric �eld E and
magnetic �eld B on charged particles. The terms appearing are well established in �uid
dynamics, except possibly for the term ω̇i, expressing the rate of production of the i-th
species due to chemical reactions and the term V d

i , di�usion velocity of the i-th species.
As said, such equations are valid both in and out of thermodynamic equilibrium,

meaning that their operational range is extended to the rare�ed region. The problem
encountered in solving this equations lies in �nding a closure for the transport terms:
the divergence of the stress tensor Π, the heat �ux q and the di�usion velocity V d

i . The
Navier-Stokes equations are just one closure possibility, with the advantage of simplicity
but carrying the drawback of breaking down as the �ow becomes rare�ed.

From the kinetic point of view, the Navier-Stokes equations are valid for small de-
partures from equilibrium, where the distribution function is closely Maxwellian:

fMi = ni

(
mi

2πkBT

)
exp

(
− mi (ci − u)2

2kBT

)
with i ∈ S (2.8)

where ni is the number density and kB the Boltzmann constant. Luckily, despite the
high degree of rarefaction, this will prove to be the case in the meteor trails of this work.



Chapter 3

Physico-chemical models for

hypersonic �ows

If one was to summarize hypersonic �ows in just one world, this would probably be
�temperature�. In fact, at high �ight speeds the huge kinetic energy of the �ow converts
into thermal energy near the body and the temperature raises up to values in the order
of 10 000 K for the Apollo capsule entry, and up to 1 000 000 K for meteors. Temperature
changes often happen extremely quickly and this is the case of shockwaves for example
or hypersonic boundary layer �ows.

The description of hypersonic �ows fundamentally deviates from classical supersonic
aerodynamics for the progressive importance that real gas e�ects acquire as the �ight
speed increases. The molecular nature of the �ow has to be taken into account and
its thermodynamic and transport properties need to be accurately modeled, as well as
chemical reactions.

This chapter introduces the main physico-chemical models used in this work for de-
scribing the properties of meteor trails.

3.1 Thermodynamic properties

Thermodynamic properties of high temperatures �ows are usually obtained from a mi-
croscopic approach, where the energy states of atoms and molecules are directly modeled
using quantum mechanics.

The energy of elementary particles is distributed among various forms: �rst of all,
atoms and molecules possess translational energy due to their motion in space; molecular
species also possess rotational energy, depending on their geometrical shape and thus
to their moment of inertia, and vibrational energy due to the intermolecular potential
keeping together its constituting atoms. Finally, atoms and molecules both have the
ability to store energy in the form of electronic energy, originating from the Coulomb
interaction between the positively charged nucleus and the bond electrons. An addi-
tional contribution is given by the formation energy, to be taken into account whenever

11
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chemical reactions take place. The case of free electrons is simpler, since they only have
translational and formation energies (and their spin).

From all the said types of energy a temperature can be de�ned, so that for a given
chemical species i, the energy per unit mass may be written as:

i ∈M → ei = etri (T ) + eroti (T r) + evibi (T v) + eeli (T e) + eformi

i ∈ A → ei = etri (T ) + eeli (T e) + eformi

free electrons → ee = etre (Te) + eforme

where M and A refer to the set of molecules and atoms and the appearing tem-
peratures are respectively the translational (T ), rotational (T r), vibrational (T v) and
electronic (T e) temperatures1. The last three are referred to as internal temperatures.

Of course, di�erent chemical species may have di�erent internal energies, but this case
is out of the scope of this work. In particular, this work will be performed in the somehow
simpli�ed hypothesis that all those temperatures are equal: T = T r = T v = T e. Such
case is referred to as thermal equilibrium and appears when a su�cient time interval is
left to the chemical species for equilibrating (thermalizing) their energy levels.

The physical expression of those energies, as well as all the thermodynamic properties
arising from them (such as speci�c heats) is obtained in the framework of quantum and
statistical mechanics and is very nicely explained in [22].

As a �nal note, the model used in this work for the molecular energy levels is the
Rigid Rotor Harmonic Oscillator model (RRHO). The reader is referred to the given
reference for additional details.

3.2 Transport properties

While thermodynamic properties can be obtained from quantum and statistical mechan-
ics, an expression for transport properties is typically obtained in the framework of kinetic
theory. In fact, transport properties express how mass, momentum and energy are trans-
ported among nearby �uid elements and are fundamentally due to the collisions between
molecules composing the �uid.

In this work on meteor trails, we are particularly interested in two transport prop-
erties: mass di�usion coe�cients and heat conductivity. The �rst property will be used
to model the di�usion of free electrons from the core of a ionized meteor trail to the
surrounding regions, while the latter will enable us to model how a hot trail cools down
and reaches the freestream temperature. Interestingly enough the viscosity, probably the
most famous among the transport properties will not be used in this work, due to the
particular Lagrangian nature of the tools developed.

A microscopic description of transport properties starts from the modeling of molec-
ular collisions. Molecular collisions can be treated classically as the motion of two bodies
with a given initial velocity and an intermolecular potential ϕ(r) among them. From the

1Note that the assumption that the translational energy of free electrons is equal to the electronic

energy of heavy species has been here performed. This is frequently the case since electron collisions are

the preferred way of exciting electronic levels of atoms and molecules
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potential, the main collision integrals Q
(l,s)
ij can be computed, as reported in [23]. Those

quantities then enable transport properties to be computed via algorithms proper of the
kinetic theory of gases, as deeply explained in [20].

Mass �uxes

The computation of mass �uxes proceeds through the computation of the di�usion veloc-
ities V d

i , through the di�usion matrix Dij . Only the gradients of species concentrations
will be used as a driving force, while barotropic di�usion and Soret e�ect will be ne-
glected:

V d
i = −

∑
j

Dij∇Xj + kiE (3.1)

This is just one possibility of obtaining the di�usion velocity, another one being
solving the Stefan-Boltzmann equation [20].

Heat �ux

The heat �ux q will be computed through the thermal conductivity k and taking into
account energy trasport through di�usive mass �ux:

q = −k∇T +
∑
i

ρihiV
d
i (3.2)

Ambipolar assumption

A particularity of low density plasmas, such as meteor plasmas, is the tendency to remain
quasi-neutral. In fact, although free electrons detach from heavy species, when external
electromagnetic �elds are not applied the Coulomb attraction to the positive ions is such
that the plasma remains globally neutral. Local charge oscillations happen but their
extent is limited to the Debye length.

This behavior is the so called ambipolar assumption: an ambipolar electric �eld is
created when electrons and ions distantiate from each other, pulling them back together.
This behavior has an impact in the way the transport properties are obtained, as reviewed
by [20]. Mathematically, this property translates into imposing zero current and charge:

3.3 Chemical reactions

Chemical reactions are a characterizing phenomena of high hypersonic �ows. In the
framework of meteor trails in particular, attention is focused to ionization and recombi-
nation reactions, regulating the quantity of free electrons populating the trail.

Chemical reactions appear in the governing equations trough the term ω̇i (eq. 2.7),
expressed through the law of mass action as explained by Anderson in [24]. In the current
work, the chemical rate coe�cients k are based on the generalized Arrhenius law:

k = ATn exp (−Ea/kBT ) (3.3)
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where T is the temperature, kB the Boltzmann constant and Ea the activation energy
of the reaction. The parameters A and n, as well as the activation energy are typically
obtained by �tting this expression to experimental data. This form is almost ubiquitously
used in hypersonic gas �ows and the chemical mechanism for air, as well as the rates
constants A, n and Ea, are taken from Park [25].

3.4 The Mutation++ library

From a practical point of view, the thermodynamic and transport properties needed in
this work are obtained via the Mutation++ library (MUlticomponent Thermodynamic
And Transport properties for IONized gases in C++). Such a library is an open-source
tool developed at VKI, aimed at providing an e�cient coupling with CFD codes.

Enthalpies, speci�c heats, chemical rates and di�usion coe�cients at a given thermal
state are easily obtained by a call to the library, and can be plugged into the governing
equations describing the �ow behavior.

As an example of the capabilities of the Mutation++ library, a plot of the enthalpy
and speci�c heat at constant pressure is shown in Fig. 3.1. The gas is an air mixture
composed by 11 species: N2, O2, N , O, NO, N+

2 , O
+
2 , N

+, O+, NO+ and free electrons
e−. The enthalpy and speci�c heat are plotted at various temperatures characteristic of
the hypersonic regime, and shows the classical behavior of reacting �ows: in fact, peaks
are obtained in correspondence of the dissociation of chemical species, where part of the
energy is used to break molecular bonds or, at higher temperatures, to ionize the �ow.

The Mutation++ library is used in all the simulations performed by the Lagrangian
reactor LARSEN developed in this work. This library is used also in Appendix C.
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Figure 3.1: Mutation++: enthalpy and speci�c heat at various temperatures for the air
11 mixture at 100 Pa.



Chapter 4

DSMC method for rare�ed �ows

In Chapter 2 the equation describing the behavior of �ows up to high degrees of rarefac-
tion was introduced: the Boltzmann equation. As was explained, a direct solution of
such equation is hard to obtain due to its integro-di�erential nature. This section deals
with the most used indirect approach for obtaining a solution the Boltzmann equation:
the Direct Simulation Monte Carlo (DSMC) method, �rst introduced by G. Bird and
well treated in [18].

4.1 DSMC algorithm

The DSMC method mimics the physical nature of gases, that are composed by a large
number of particles, exchanging energy with each other via molecular collisions. The
method treats the motion of particles deterministically but relegates collisions to the
statistics. In particular, the method is composed by two steps:

Translation step: particles are moved in the domain following a ballistic trajectory

Collision step: collisions are computed among randomly sampled pairs of particles.

It's important to recall at this step that DSMC is not molecular dynamics, in that only
a very small subset of particles is actually simulated. Those simulated particles have the
very same physical properties as real particles, but are representative of a large number
of them. The correct solution is then obtained through the statistical treatment of
the results. This fact allows DSMC simulations to be applied to macroscopic engineering
problems as well, and is not limited to simulations at the microscopic scale. Moreover, the
DSMC method has been shown to converge to the solution of the Boltzmann equations,
provided that some rules are respected in the numerical parameters, see Wagner [26]. The
stochastic treatment has a price: the solution presents some inherent statistical noise,
that can be reduced by suitable sampling time.

From the numerical point of view, the domain is divided in cells that are used to
recognize neighboring particles, among which collisions are to be performed. In order
for the solution to be physically meaningful, the computational grid should be smaller

15
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than the particles mean free path. A common choice consists in taking the grid size as
1/2 or 1/4 of the estimated local mean free path. The number of simulated particles is
then chosen to ensure that every grid contains an adequate number of particles (possibly
bigger than 10 as a rule of thumb - for sure not smaller than 5). Finally, the timestep
has to be chosen to be smaller than the mean time between collisions, a value of 1/2 or
1/4 being a good choice.

4.2 Collisions and energy exchange

A number of models are available for computing molecular collisions and are reviewed in
[18]. Collisions are assumed to be binary, and the assumption is valid for dilute gases.

The most simple model is the Hard Sphere (HS) model, that assuming the particles
are rigid spheres predicts a cross section σ = πd212, with d12 being the average of the
spheres diameters. This proves to be a quite rough model, not able to correctly reproduce
properties of the gas such as the viscosity.

More advanced models have been proposed, such as the Variable Hard Sphere (VHS),
introducing a dependency of the cross-section on the collision energy and thus allowing for
a much better prediction of the variation of viscosity with respect to temperature. In this
work, a further extension will be used, called Variable Soft Sphere (VSS) model, relaxing
the isotropic scattering pattern intrinsic in the previous two models: the de�ection angle
is modeled as χ = 2 cos−1[(b/d)1/α]. All the details can be found in [18].

Inelastic collisions and chemistry

Over the years, the DSMC method has been extended to model the energy exchange
among energy levels as well as chemical reactions. A number of models were proposed,
such as the Rough Sphere model for example. The most common choice is the Larsen-
Borgnakke model1, which is employed in this work also.

Regarding chemical reactions, two main possibilities are available today: the TCE
model (total collision energy) and the QK (quantum-kinetic) see Bird [27]. This work is
based on the �rst.

Ambipolar assumption

As was discussed in Section 3, low density plasmas in absence of external electromagnetic
�elds can be modeled using the ambipolar assumption. This assumption is particularly
needed in the �eld of DSMC, in fact due to the much smaller mass of electrons with
respect to heavy particles, their velocity is much higher: in order to correctly track
them, a correct timestep should be reduced by orders of magnitude.

In the ambipolar assumption, electrons are moved with their parent ions during the
translation step and their energy is used only in computing the e�ect of collisions.

1Although unrelated to the Larsen-Borgnakke model, the name of the Lagrangian solver developed

in this work was chosen in honor of Larsen, due to the solver capacity of re�ning a solution from the

point of view of the internal energy.
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4.3 The SPARTA code

An open-source implementation of the DSMC method is provided by the SPARTA code -
Stochastic PArallel Rare�ed-gas Time-accurate Analyzer, developed at Sandia Labora-
tories [28]. Such solver implements the models introduced in the previous sections and
will be used in this work.

The code gives to the user the possibility of obtaining a number of di�erent outputs,
computed from the properties of the particles. In Chapter 6 the code will be used to
simulate the air �ow around a meteoroid and a number of �elds will be obtained, such
as the velocity, temperature, density �eld and concentration of chemical species.

It is important to highlight a major de�ciency of the SPARTA code: as is common for
DSMC software, SPARTA is currently able to treat only reactions originating from binary
reactions (such as N2 + O→ NO + N) or three body dissociation reactions (for example
N2 + O2 → N + N + O2). Recently, the possibility of computing recombination reactions
was modeled, but such feature is not available for free electrons. This de�ciency will be
determinant in the study of free electrons in meteor trails and will lead to the necessity
of a chemical correction.

Before moving to the actual simulations performed in this work, some training was
performed: simple testcases were simulated and the results were veri�ed to follow liter-
ature results. In the next section, the results of a simulation performed with SPARTA
are reported.

4.4 Testcase: hypersonic rare�ed �ow over a sphere

As a proof of the capabilities of the DSMC method and of the SPARTA code, some results
of an hypersonic simulation will be shown in this section. The analyzed testcase is the
same that will be thoroughly discussed in Chapter 6 and represents a meteoroid during
its atmospheric entry, but the attention in this section is focused not on the trail but
towards the head region. In particular, the post-shock region is analyzed in terms of
distribution function. The simulated sphere has a diameter of 1 cm and is moving at a
velocity of 20 km/s at an altitude of 70 km. The �ow is rare�ed and shows a Knudsen
number equal to 0.1.

A representation of the resulting temperature �eld is given in Fig. 4.1. The raise in
the shock region is clearly visible, and the shock is very di�use due to the rarefaction
conditions.

1.31E+50 Translational temperature [K]

Figure 4.1: Temperature �eld computed by SPARTA.



18 DSMC method for rare�ed �ows

What is more interesting is that since the method provides solutions of the Boltzmann
equations, out of equilibrium �ows can be e�ectively simulated. In particular, at the
simulated rare�ed conditions the �ow in the shock layer of the meteor is known to be
strongly out of equilibrium. This fact can be appreciated if the distribution of the particles
velocities is plotted (Fig. 4.2). The blue curve represents the distribution of longitudinal
velocities, while the red curve is the distribution of transverse (radial) velocities.

While an equilibrium solution would present a distribution of velocity shaped as a
Gaussian distribution (actually, a Maxwellian, see Chapter 2), the shown result can be
seen to have a totally di�erent shape. In particular, the various families of particles can
be clearly distinguished. First of all, molecules are reaching the body from the left and
have a positive velocity equal to the freestream value of 20 km/s: those particles can
clearly be seen as the peak on the positive values of the velocity axis (blue curve). It is
known that the temperature is linked to how much the distribution function is spread:
the considered blue peak is quite narrow - the freestream particles are in fact at low
temperature.

When the particles reach the wall, they heat up at the wall temperature (2000 K in
this simulation) and bounce back in the other direction. Those particles can clearly be
seen on the negative region of the axis and their temperature is seen to be higher than
before. The two families are connected in the middle: this e�ect may be attributed to
the few but still present collisions.

Finally, the curves are seen to superimpose on the red curves, showing that the vertical
velocity distribution is as well the sum of two populations: a cold freestream population
and a hotter one coming from the wall.

Since the DSMC software computes the temperature as a measure of how much the
distribution function is spread (assumption valid in the equilibrium case only), it is pos-
sible to understand that this value does not have a physical meaning. This temperature
should be identi�ed more as a geometrical temperature.
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Chapter 5

Development of a Lagrangian solver

for detailed chemistry

The bulk of the time spent in this project consisted in the development of a solver
able to reprocess simple �ow simulations by introducing arbitrarily complicated chemical
models. As a �nal result, a numerical implementation have been produced, able to treat
2D axisymmetric �ows. The path to the creation of such solver will be detailed in this
chapter. In Chapter 6, the solver will be applied to the study of meteor trails, allowing
to obtain a description of the free electrons evolution, �nal goal of this work.

5.1 Rationale

The motivation for creating a solver able to reprocess an existing simulation is to be
found in the practical di�culty of performing numerical simulations with very elaborated
chemical models. In fact, if chemical reactions are to be taken into account, the set of
governing equations grows in size: one mass conservation equation has to be added for
each chemical species, as can be seen in equation 2.7.

The number of chemical species to be simulated if often very big: in hypersonic �ows
modeling for example, air is typically modeled as an 11 species mixture (and sometimes
more). In many instances the number of species to be simulated is even higher: it's for
example the case of meteor trails, where air species mix with ablated species coming from
the meteoroid and chemical reactions produce additional species such as metallic oxides.

Chemically reactive �ows are not the only situation where this practical issue arises:
recent accurate ways of modeling high temperature �ows out of equilibrium consist in
modeling internal energy levels of atoms and molecules as pseudo-species and the ex-
change of energy among them as pseudo-reactions. Such approach is referred to as �state
to state� modeling and promises extreme accuracy in terms of physical modeling, at the
price of simulating a huge number of pseudo-species, in the order of 1000.

The idea underlying this work is the following: while a direct solution of the complete
chemical problem is often impossible to obtain for practical reasons, it's possible to
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compute an initial rough solution and then re�ne it a posteriori. The suggested approach
is based on three steps:

1. A baseline simulation including a simple chemical model is performed (with what-
ever numerical tool);

2. Streamlines are extracted from such solution;

3. An ad hoc solver is run over the streamlines, introducing a posteriori a (much)
more detailed chemical model.

We refer to this approach as Lagrangian due to its streamline-marching nature. The
key point in this approach is that the heavyweight nature of the multi-species problem
will be balanced by an inherently lightweight Lagrangian formulation, allowing for very
complicated chemical models to be taken into account. In the rest of this work, this ad
hoc solver will be referred to as �Lagrangian reactor� or �Lagrangian solver�.

Of course, the suggested approach is just an approximation to the real problem. In
fact, this can be seen as a one-way coupling and no feedback of the re�ned results is
provided on the starting solution, but the approach is seen to provide valuable results,
at least for the performed testcases.

Lagrangian reactor and meteor trails

Due to the capability of re�ning an initial solution by adding a more elaborate set of
reactions, this approach proves to be particularly suited for the current work, where the
available method for computing the �uid dynamics of meteor trails is not able to realisti-
cally treat the chemistry of electrons. Moreover, the lightweight nature of this approach
will enable to obtain a solution for very elongated trails, reaching some kilometers of size.

5.2 Lagrangian formulation of �uid equations

The �rst step towards the creation of the a reactor able to reprocess the solution along
given streamlines is rewriting the governing equations from the Eulerian to the La-
grangian formulation. The developed solver will take the velocity and density �elds1

as given from the baseline solution and recompute the following:

i) One mass conservation equation for each chemical species;

ii) The total energy conservation equation.

1The fact that the density �eld is taken as it is is a direct consequence of the fact that the velocity

�eld is given. In fact, if the velocity �eld is not recomputed, there is no point in solving the mixture

mass conservation equation, that would simply provide the same value as the previously computed, for

the density.



Development of a Lagrangian solver for detailed chemistry 21

In order to write the equations in the Lagrangian formulation for steady �ows, the
derivative along the streamline is expressed:

u ·∇• = U
d•
ds

(5.1)

where u is the �ow�eld velocity vector, U its module and s is the streamline curvi-
linear abscissa. The result of such procedure are shown in the following, where also the
mass fraction Yi = ρi/ρ was introduced. Equations are formulated and solved in the
steady state conditions.

An important remark on the trail geometry allows to obtain important simpli�cations
in the nature of the equations. Due to the extremely slender nature of meteor trails, dif-
fusion terms can be evaluated only radially. Longitudinal di�usion will thus be neglected
with respect to the radial one: this approximation is justi�ed based on the disparity of
the radial and longitudinal gradients).

Mass conservation for chemical species

dYi
ds

=
ω̇i −∇ ·

(
ρiV

d
i

)
ρU

(5.2)

As said, the di�usive mass �ux will be evaluated only in the radial direction.

Temperature equation

An equation for the temperature is obtained starting from the enthalpy equation, formu-
lated along a streamline, in the steady state case:

dH

ds
=

∇ · (u · τ )−∇ · q
ρU

=
Q
ρU

(5.3)

By expanding the total enthalpy per unit mass H into its internal contribution h and
kinetic contribution U2/2, and recalling that for a perfect gas, h = cpT , an equation for
the evolution of the temperature along the streamline is found:

dT

ds
=

1

U

[
Q
ρ
− U dU2/2

dt
−
∑
i∈S

hiω̇i
ρ

]/[∑
i∈S

Yicp,i

]
(5.4)

where cp are the speci�c heats per unit mass. The Lagrangian reactor can take the
value of Q from the baseline simulation: in this case, the energy variation among to
subsequent streamline points is directly extracted from the baseline simulation and no
assumption needs to be done on the �uxes. This implies that the solver operating in this
mode is potentially able to recompute even rare�ed solutions.

If the reactor is asked to recompute Q, this will be done by computing the heat �ux
only in the vertical direction, possible assumption due to the slenderness of the trail.
Also, if Q is to be computed, the Lagrangian reactor will neglect the power of viscous
forces, in the hypothesis that the �ow in the trail is almost uniform (Chapter 6 will show
that this is the case).
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Mathematical nature of the equations

The governing equations for the Lagrangian solver have a parabolic nature due to the
hypothesis that �uxes are only directed radially. This fact legitimates the employment of
a marching method such as the Lagrangian software developed in this work. A marching
approach is notoriously much lighter than full multidimentional CFD simulations.

5.3 The LARSEN code

The work on a Lagrangian reactor able to correct the chemistry of a baseline simulation
was started at VKI by the author before the beginning of the this project. A version
of the described Lagrangian solver was in fact recently developed and is described in
[29]. Such solver is named LARSEN, standing for LAgrangian Reactor for StrEams in
Nonequilibrium.

The formulation of the LARSEN code prior to the current work was single-streamline.
For this reason, the code was not suitable for an application to the determination of
free electrons in meteor trails, since di�usion of electrons from one streamline to the
neighboring one could in no way be computed.

This work focused on the extension of the LARSEN code to a multi-streamlines for-
mulation. Multiple streamlines are imported from the baseline solution and governing
equations are solved simultaneously along all of them. Di�usion �uxes are then computed
using an implicit approach.

Software details

The LARSEN code is implemented in C++ in an object-oriented fashion. Thermody-
namic and transport properties, as well as chemical reactions, are obtained using the
Mutation++ library developed at VKI. The integration of governing equations is per-
formed using the boost libraries and the solution is exported using the VTK libraries, for
an easy analysis with graphical software such as ParaView.

It should be stressed that all the used libraries are open-source, and the software for
analyzing the solution is open-source as well. For this reason, the code su�ers from no
license issues.

5.4 One-way re�nement approach

As explained, the �Lagrangian approach� for thermochemical re�nement is basically a
convenient approximation of the problem. As such, it's important to understand whether
this approximation actually leads to improved results or not.

This answer is partially given in [29], where a number of testcases is analyzed. The
performed testcases regard the thermochemical relaxation past a shockwave: �rst, a
baseline simulation is computed using a simple chemical model; this solution is then fed
to the LARSEN solver and a re�ned solution is computed, adding many more chemical
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species; �nally, results are compared to a third complete simulation, obtained by taking
into account all the species from the beginning.

In all the testcases performed the results from the Lagrangian reactor are seen to
be a signi�cant improvement to the baseline solution: the error with respect to the
full solution was reduced at least by the 50%, in many cases much more. An example
extracted from [29] is provided in Fig. 5.1: the Lagrangian reactor is asked to recompute
the thermal relaxation of an air mixture by adding the possibility of ionization. The
solution is found to be very close to the exact solution in terms of temperature, with
some deviations in the transitory region. Values for chemical species are found to be in
good agreement and almost exact at the equilibrium, even for ionized species, that were
not present in the initial baseline simulation.
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Figure 5.1: Correction of a baseline solution with LARSEN.

An additional veri�cation of the approach is obtained in Chapter 6, where the La-
grangian simulation is found to provide results that are very close to the baseline simu-
lation in terms of free electrons di�usion.

Those results suggest that the proposed one-way coupling can actually be used to
improve the chemistry in baseline simulations.

5.5 Implementation of di�usion �uxes

The main contribution of this work to the LARSEN software lies in the implementation of
di�usion �uxes (of mass and energy). Those terms appear as derivatives along the radial
direction2, the equations thus become a set of PDEs and additional e�orts are required
for their solution with respect to the original version of LARSEN. Two main modi�cations
have thus been implemented:

• A �nite volume approach is introduced in the transverse direction, to evaluate
di�usion �uxes across streamlines;

2As explained, the longitudinal component of mass �uxes is here neglected: the slender nature of the

trail ensures that the gradients are mainly in the transverse direction.
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• The integration process is performed along the trail axis, simultaneously for all the
streamlines.

The numerical solution of the governing equations is treated in detail in the next sections.

5.5.1 Finite volumes for di�usion �uxes

During the integration process along the streamlines, the right hand sides of equations
5.4 and 5.2 need to be evaluated at each integration step. Terms such as the chemical
production rates ω̇i, the enthalpies hi and speci�c heats cp,i are easily evaluated since they
only depend on the local state along the streamline. On the other hand the di�usion
terms need to take into account the temperature and species concentration gradients
across neighboring streamlines. A 1D �nite volume approach [30] is employed across the
streamlines.

x

y

i

i+1/2

i-1/2

i+1

i-1

xn
Figure 5.2: Finite volume approach across streamlines for the �uxes computation.

Finite volumes mesh

For a given integration location xn, a cell is de�ned for each streamline, taking its inter-
faces halfway from the neighboring streamlines, as shown in Fig 5.2. The position of the
interfaces for the i-th streamline is thus de�ned as:

yi+1/2 =
yi+1 + yi

2
yi−1/2 =

yi + yi−1
2

(5.5)

The interfaces position is used to �nd the geometrical cell center yci , as well as the
cell size ∆yi:

yci =
yi+1/2 + yi−1/2

2
∆yi = yi+1/2 − yi−1/2 (5.6)

It should be noted that the cell center is not necessarily located on the streamline:
this is the case only if streamlines are uniformly spaced.
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Di�usive �uxes

Once the �nite volumes mesh has been de�ned, the divergence of di�usive �uxes can be
computed from the �ux values at the cell interfaces. By denoting with Fd the di�usive
mass or heat �ux, the equation for the i-th cell reads:


(
∇ ·Fd

)
i

=
Fdi+1/2 −F

d
i−1/2

∆yi
← Cartesian case

(
∇ ·Fd

)
i

=
1

rc

(
rFd

)
i+1/2

−
(
rFd

)
i−1/2

∆ri
← axisymmetric case

(5.7)

where ∆yi and ∆ri are the length of the i-th cell and rc is the position of the cell
center. The subscript i± 1/2 indicates that the term has to be evaluated respectively at
the top or bottom interface and is detailed in the following.

The computation of both heat and mass �uxes requires the evaluation of transport
properties of the gas mixture, respectively the thermal conductivity k and the di�usion
coe�cients Dkl. Those properties are evaluated at the interface, where the thermody-
namic state is taken as the weighted average of the neighboring cells values, as done
in [31]. By de�ning with p the integration variables (species mass fractions Yi or tem-
perature T ), the value at the interface i + 1/2 and its gradient across the interface are
computed as (similarly for the lower interface):

pi+1/2 =
pi+1∆yi+1 + pi∆yi

∆yi+1 + ∆yi
and

(
∂p

∂y

)
i+1/2

= 2

(
pi+1 − pi

∆yi+1 + ∆yi

)
(5.8)

where ∆yi+1 and ∆yi respectively denote the distance of the streamline i+1 and i
from the considered interface. It should be noted that those expressions hold for both
the 2D Cartesian and the axisymmetrical case.

Heat �ux

The heat �ux receives a particular treatment. In fact, the user can choose how to treat
the term Q in equation 5.4. One possibility consists in importing it from the baseline
simulation: in this case the software computes the variation of enthalpy among two
successive points along the streamline and then computes Q accordingly:

Q =
DH

Dt
= U

dH

ds
≈ U

∆H

∆s
(5.9)

This treatment of the termQ corresponds in taking the energy �uxes from the baseline
simulation. This is a trick that allows to avoid recomputing the energy �uxes, and allows
a variation of enthalpy to occur even if one only streamline is analyzed. This feature was
already implemented in the existing code before this work and the reader is referred to
[29] for a deeper explanation.
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Another possibility, implemented during this work, consists in obtaining the heat �ux
using the Fourier's law, computing temperature gradients across the cell interfaces. In
this case, the term Q is taken as:

Q = ∇ · q (5.10)

The heat �ux is currently implemented via the Fourier law: q = −k∇T +
∑

k ρkhkV
d
k .

The �ux at the interface i± 1/2 thus reads:

Fdi±1/2 := qi±1/2 = −ki±1/2
(
∂T

∂y

)
i±1/2

(5.11)

where the temperature gradient is evaluated using equation 5.8. The power of viscous
forces is not yet implemented since the solver was conceived for studying quasi-uniform
�ows. However, its implementation is trivial and is suggested as a future work.

Mass �uxes

The evaluation of mass �ux Jk = ρiV
d
k for the species k needs computing the di�usion

velocities V d
k , obtained from the gradients of species concentration and the multispecies

di�usion matrix Dkl:

Jk = ρkV
d
k = −ρk

∑
l

Dkl
∂Xl

∂y
+KkE (5.12)

The evaluation at the interface of this �ux is performed as done in equation 5.11. The
gradient of mole fractions is currently the only driving force introduced. Other e�ects
(barotropic di�usion and Soret e�ect) are suggested as a future development of the code.

Boundary cells

A particular treatment is reserved to the boundary cells. For symmetry reasons, the lower
cell is supposed to have a zero �ux from the bottom interface, while it can exchange mass
and energy through the top. The upper cell on the other hand is supposed to have a
total zero net �ux: the �ux on the overlying interface is set equal to the underlying one.

5.5.2 Integration along multiple streamlines

The introduction of mass and energy �uxes imply the need of computing the vertical
gradients of species concentration and temperature in the vertical direction. This means
that at a given timestep this information must be available: all the streamlines must
have reached the same longitudinal position. On the other hand, if integration would be
performed along the streamline, synchronization would be lost, the quicker streamlines
leaving behind the slower ones. For this reason, the formulation is slightly modi�ed in
order to perform the integration along the x axis simultaneously for all the streamlines.
This approach is done with a simple change of variables, introducing the local slope α.
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dx = cosα ds =⇒ d•
dx

=
1

cosα

d•
ds

(5.13)

It should be noted that this requires the streamlines to be somehow aligned along the
x axis. This is de�nitely the case for meteor trails, where streamlines are almost parallel.
A scheme of the process is shown in Fig. 5.3.

In this way, the integration can be performed simultaneously for all the streamlines
and the problem reduces to a system of equations:

dx

ds

x

y

(1)

(2)

(3)

(4)

(5)

dx
ds

Figure 5.3: Conversion from curvilinear abscissa
to trail axis coordinate.


dξ1
dx = 1

cosα1

(
dξ
ds

)
1

...
dξN
dx = 1

cosαN

(
dξ
ds

)
N

(5.14)

dY e
j

dx
=

1

cosαj

(
ω̇e −∇ · Je

ρU

)
j

(5.15)

where ξi are the variables along the i-th streamline (mass fractions of chemical species
and temperature). As an example, equation 5.15 shows the mass fraction of electrons on
the j-th streamline.

Finally, the integration of the system of equations along the x direction is performed
using a rosenbrock 4 method: a sti� solver is needed for correctly dealing with the
chemical source term, that typically introduces a number of very di�erent time scales
into the system.

5.5.3 Veri�cation of the code

The modi�cations done to the software LARSEN, detailed in the previous paragraphs, have
been veri�ed against simple testcases and provide con�dence that the implementation
procedure have been successful. In particular, a simple veri�cation of the mass di�usion
implementation is shown in this section: the solution provided by LARSEN was compared
to the solution of the di�usion equation.

∂U

∂x
= α

∂2U

∂y2
(5.16)

The solution of equation 5.16 is known for the case of imposed values at the boundaries
y = 0 and y →∞. The equation can be shown to be self-similar, the similarity variable
being η = y/

√
4αx, and the solution is given in terms of the errorfunction:
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θ = erf (η) with θ =
U − U0

Uinit − U0
(5.17)

The mass equation solved by the Lagrangian reactor LARSEN follows the simpler dif-
fusion equation in case of small concentration perturbations. A perturbation of concen-
tration is then applied to a binary mixture of molecular oxygen and nitrogen and the
evolution along x is seen to match the theoretical prediction to a very good accuracy.
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Figure 5.4: Di�usion: analytical solution erf vs value computed by LARSEN.

Other than this 2D case, veri�cation was performed for the axisymmetric case as well,
for both mass and energy di�usion. Since the analytical solution for the axisymmetric
case is signi�cantly more complicated, a numerical result was used as comparison. In all
the cases, the solution of LARSEN is seen to follow closely the reference solutions.

Validation of the code against experimental results has not been performed so far
due to the di�culties in obtaining reliable reference data for �ight conditions typical of
meteoric �ows. However, a big amount of data is available at VKI for the Plasmatron
jet for the continuum regime: a comparison of the developed took with the freestream
plasma jet is suggested as a possible future work activity.

Finally, an a posteriori veri�cation will be found in Chapter 6, where the solution of
the Lagrangian reactor will be found to closely follow the di�usion pro�le predicted via
the DSMC solver.



Chapter 6

Results

In the previous chapters, the physical and numerical background for the study of at-
mospheric entry plasma �ows was discussed and a new method based on a Lagrangian
approach was introduced. All those theories, models and tools converge in this chapter,
where the aim of this work is �nally met, namely the simulation of free electrons in
meteor trails.

The goal of this chapter is establishing a methodology for analyzing meteor trails.
Attention focuses on a simple testcase, a nonablating meteoroid simulated at one point
of its atmospheric entry trajectory. Results shown in this chapter are thus to be intended
as a starting point for a more extended analysis performed on di�erent meteor sizes and
�ight conditions, possibly taking into account ablated species as well.

The studied testcase consists in a meteoroid of 1 cm diameter, entering the Earth's
atmosphere at a velocity of 20 km/s. The simulation is carried out at an altitude of
approximately 70 km from the ground, that given the size of the meteoroid gives rise
to a big Knudsen number and the �ow is thus rare�ed. Table 6.1 resumes the current
testcase characteristics, together with the Knudsen and Mach numbers, while a picture
extracted from the DSMC simulation is shown in Fig. 6.1.

diameter 1 cm
�ight velocity 20 000 m/s

altitude ≈ 70 000 m
Kn∞ ≈ 0.1
M∞ 67.2

Table 6.1: Size and �ight conditions
for the simulated meteoroid. Figure 6.1: Extract from DSMC simulation.
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First of all, in Section 6.1 the rare�ed �ow�eld will be studied using the Direct
Simulation Monte Carlo method, introduced in Chapter 4. The method will provide
a good knowledge of the �ow�eld in the trail, as well as a �rst estimation of the free
electrons concentration.

In Section 6.2, the meteor will be analyzed from the �uid dynamics point of view: the
main phenomena will be highlighted and three di�erent regions will be identi�ed, where
the �ow�eld shows di�erent features.

Due to the limitations on recombination processes and complex chemical mechanisms
in the DSMC algorithm, the prediction of electron concentration obtained in Section 6.1
cannot be relied upon. For this reason, in Section 6.4 the DSMC solution will be post-
processed using the Lagrangian reactor developed in this work, providing a more reliable
map of free electrons concentration. Finally, the Lagrangian reactor will be also used to
study the electron concentration up to a distance of 2 km from the meteoroid.

6.1 Meteor simulations at high altitude

The �rst step in the current analysis of meteor trails consists in performing a DSMC
simulation of a nonablating meteor in air, with the open-source software SPARTA (Section
4.3). The meteoroid is approximated as a sphere of 1 cm diameter and the air gas mixture
is initially entirely composed by diatomic nitrogen an oxygen, eventually chemically
reacting and dissociating near the body. The initial air composition in mole fraction is
0.791 parts of N2 and 0.209 parts of O2. The enabled set of chemical reactions may lead
to the production of an additional number of species, namely N , O, NO, N+, O+, N+

2 ,
O+

2 , NO
+ and free electrons e−. The total number of chemical species is thus 11, and

this model will accordingly be referred to as �air 11 �. Reaction rates are taken from Park
[25]. Freestream conditions for the simulated trajectory point are given in table 6.2.

U∞ 20 000 m/s
n∞ 1.19× 1021 part/m3

ρ∞ 5.69× 10−5 kg/m3

T∞ 220 K
Twall 2000 K

Table 6.2: Free stream conditions for DSMC simulation.

Collisions among molecules are computed using the VSS model and the relaxation
of internal energy is modeled through the Larsen-Borgnakke method, as discussed in
Chapter 4. Collisions of molecules with the meteoroid surface are treated as fully di�usive
(accommodation coe�cient equal to 1).

The choice of the wall temperature is an important parameter for the study of the
stagnation point region, where a big number of free electrons are produced. The wall
temperature Twall is taken to be equal to 2000 K, that would be a realistic value for a
melting meteoroid composed of rock or iron. It's important to stress that despite this
choice for the wall temperature, in this simulation the meteoroid does not ablate. Ablated
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species would have a number of e�ects, including modifying the �ow�eld and the electrons
concentration. However, the real goal of this chapter is developing a methodology for the
trail study: more accurate simulations may be performed in the future to increase the
physical realm of the model.

6.1.1 Grid and numerical details

The performed simulation is 2D axisymmetric and the domain is a box with the lower
side coincident to the meteor trail, as shown in Fig. 6.2. Particles are injected at the
inlet boundary at freestream conditions and when they cross the outlet boundary they
are removed from the computational domain. The lower side, coincident to the trail axis,
is modeled as fully re�ective to introduce axial symmetry. At the upper boundary, as
for the inlet, particles are seeded during the simulation at freestream velocity, and are
eventually pushed out of the domain by collisions with inner particles.
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Figure 6.2: Computational domain for the DSMC simulation.

The appropriate choice of parameters for DSMC simulations is discussed in Chapter
4; the main parameters are here brie�y reviewed. The timestep for the simulation was
chosen to ensure that everywhere in the domain its value is smaller than the mean time
between collisions and is speci�ed in table 6.3. This constraint is particularly heavy in
the post-shock region, where the high values of temperature and density are higher than
freestream ones by orders of magnitude. The parameter Fnum , ratio between real and
simulated particles is shown in the same table and was chosen to ensure that each cell
contains in average 20 particles.

timestep ∆t 4.5× 10−9 s
Fnum 4× 1016

Table 6.3: DSMC simulation: parameters.

Ncells Nparticles

2 300 000 15 000 000

Table 6.4: DSMC simulation: num-
ber of cells and simulated particles.

The grid cells are chosen to have a size which is smaller than the mean free path.
Dimensions for the asymptotic grid cells are given in table 6.3. Again, the most critical
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Figure 6.3: DSMC simulation: detail of
the grid near the meteoroid.

100

Particles per cell (average)

52.5 7.5

Figure 6.4: DSMC simulation: average
number of simulated particles per cell.

region is the post-shock region, since at higher densities the mean free path reduces and
the grid must correspondingly be reduced. Three levels of grid re�nement were adopted,
shown in Fig. 6.3.

The trail of high velocity rare�ed �ows is notoriously hard to simulate in a rigorous
way, due to the di�culty of having an adequate number of simulated particles in the
shadow of the body. Fig. 6.4 illustrates this problem, showing that the cells near the rear
stagnation point have a number of cells below 5, absolute minimum number to obtain
statistically signi�cative results.1 From the point of view of the trail analysis this is not
an issue, since the situation improves very quickly as the trail develops.

The simulation is run until the number of simulated particles settles to a �nal value.
Once this value becomes steady, the transitory part of the simulation is �nished and
running averages are started over the particles properties. This will provide macroscopic
�ow properties such as the velocity, density and temperature of the obtained steady state

solution.
Since the simulated domain is very slender, a domain sensitivity analysis was per-

formed: another simulation was run on a wider domain (twice as big in the vertical
direction) but no di�erence was found on the results. In fact, the advection velocity is
much higher than the velocity of propagation of disturbances in the transverse direction,
since the �ow is highly hypersonic.

6.1.2 Simulation results

The solution obtained with the SPARTA program is given in terms of a number of �elds.
Among those, the most useful from the �uid dynamics point of view are:

• Velocity �eld (u, v);

• Number density �eld (particles per unit volume);

• Translational, rotational and vibrational temperatures;

• Number density of each chemical species.
1This is a commonly adopted rule-of-thumb, discussed in Chapter 4
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Among the chemical species, the free electrons number density is provided, of partic-
ular interest for this work. Fig. 6.5 shows the temperature, velocity and number density
�elds.

1.31E+50 Translational temperature [K]

2.0E+40 Velocity module [m/s]

1.6E+210 Number density [m-3]

0 0.1 0.2 0.3position [m]0.05 0.15-0.05

Figure 6.5: DSMC simulation: temperature, velocity and number density �elds.

Those results are very interesting from the �uid dynamics point of view. From the
temperature plot in particular, the shock layer is clearly visible in front of the body. The
temperature raises to extremely high values: in fact this point is found to be highly out
of equilibrium, as was already discussed in Section 4.4, where a geometrical temperature
was introduced.

Another very interesting fact shown in Section 4.4 is the di�used nature of the shock.
This is a characteristic result of rare�ed �uid dynamics: shock waves become more and
more spread as the Knudsen number increases. In fact, the shockwave thickness is in
the order of the molecular mean free path, comparable to the body size in high Knudsen
number �ows.

The shape of the bow-shock is clearly visible by the density plot, highlighted by an
increase in the density. Again, the shock results very di�use and the increase in the �ow
variables is thus smooth.

Finally, attention should be put to the trail region, where the density shows to be
quite low with respect to the freestream values. The �ow, compressed at the stagnation
point region, expands on the sides of the meteoroid and due to the extremely high
velocity takes a big amount of time to �ll the trail, as will be further discussed in the
next sections. For reasons to be explained, this trail property will need to be carefully
taken into account for the free electrons analysis.

Starting from the temperature and density �elds, the pressure �eld can be obtained
with the perfect gas law (at thermal equilibrium the electron temperature Te is equal to
the heavy species temperature Th):

P = nkB T (6.1)
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where n is the particles number density, kB is the Boltzmann constant and T the
mixture translational temperature. The freestream pressure is found to be equal to:
P∞ = 3.61 Pa. Inspecting the pressure plot, given in Fig. 6.6 the compression of the gas
at the stagnation point can be clearly seen. The raise in pressure in this region amounts
to four orders of magnitude.

1.8E+40 Pressure [Pa]

0 0.1 0.2 0.3position [m]0.05 0.15-0.05

500
100

50 Pa

Figure 6.6: DSMC simulation: pressure �eld.

Regarding the trail region, the plot reveals that very early the pressure drops back
to low values, characteristic of the free stream. This has an important consequence
in terms of physical modeling: the role of radiation may play an important part in
the energy balance2. Those e�ects are treated in [32]. However, those e�ects are here
totally neglected, which is a common practice in DSMC simulations. In the next sections
a the Lagrangian reactor here developed will be applied to correct the current DSMC
simulation: this software may in the future be used to introduce those collisional-radiative
e�ects as well, but this is out of the scope of this work.

One more �eld deserves our attention: the number density of free electrons (number
of free electrons per unit volume), shown in Fig. 6.7.

1E19 m-3

1E18 5E17

1E17

0 0.1 0.2 0.3 0.4position [m]

Figure 6.7: DSMC simulation: number density of free electrons [particles/m3].

Electrons are mainly produced in the shock layer region, and are advected around the
meteoroid and transported in the trail. If the numerical value of the number density is
analyzed, its value is found to be very high. In particular, at those values of concentra-
tions for free electrons, incoming radio waves would be totally re�ected by the trail [33].
This result is simply the numerical con�rmation that this kind of hypersonic bodies can
actually be observed using radio techniques.

The number density of free electrons is seen to gradually decrease as the trail develops,
as a result of mass di�usion processes. Highly concentrated free electrons around the
body di�use in the surroundings and the dimension of the ionized region increases along
the x axis. While analyzing the e�ect of di�usion, that conserves the total number of

2Such e�ects appear to be important for air at pressures below 1000 Pa.
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electrons but spreads them in the surrounding, it should be recalled that the simulation
is axisymmetric, the e�ect is thus stronger with respect to 2D Cartesian geometries.
Despite the e�ect of di�usion, the free electrons concentration is seen to be very high
even at the exit of the computational domain: according to those results the portion of
the trail taking part to the radio waves re�ection exceeds the computational domain.

One very important observation has to be made at this point, regarding the shown
results. As was explained in Chapter 4, the DSMC method currently su�ers from an
important limitation: recombination of free electrons is not computed. During
the simulation, particles collide with each other and some of those collisions result in the
production of free electrons, but the opposite reaction - recombination of free electrons
with ions - is not taken into account.

This fact implies that the performed DSMC simulation3 while reliable from the point
of view of velocity and density �elds,4 should not be trusted a priori in terms of elec-
trons concentrations. The Lagrangian reactor developed in this work provides a possible
solution to this problem. In fact, in the next sections that approach will be employed to
reprocess the current DSMC simulation and will provide the sought map of free electrons
along the trail, taking into account both di�usion and recombination processes.

Simulations at di�erent �ight velocity

In order to give an idea of what happens to meteors entering the atmosphere at higher
velocity, some simulations were performed for meteors at higher velocities. An increased
speed results in mainly three e�ects: the maximum temperature increases, the amount of
electrons produced increases as well and �nally the trail gets more rare�ed and persistent.

The current simulation will be compared to a 72 km/s simulation in Appendix A.2
and a comparison with the 20 km/s results is provided in terms of temperature and
density �elds.

Statistical analysis of the �ow �eld

As discussed in Chapter 4, the DSMC method is a stochastic way of solving the Boltz-
mann equation. As such, the information carried in the DSMC solution is not limited
to the temperature, velocity and density �elds, but is much richer: the DSMC method
provides an estimation of the velocity distribution function, carrying information on the
microscopic state of the gas in each point of the domain.

An interesting analysis of the trail can be thus performed from the statistical point
of view. Results of such analysis are reported in Appendix B.

An important result of such analysis needs to be here highlighted: although in rare�ed
conditions, the particles velocity distribution is seen to be very close to a Maxwellian,
the deviation decreasing quickly as the trail develops. This fact implies that despite the
degree of rarefaction is high, a solution from the Lagrangian solver - based on continuum
hypothesis - applies as well.

3At least in the current implementation, that does not include recombination reactions.
4This statement will be discussed in Section 6.2.
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6.2 Fluid dynamics analysis of the trail

Some important observations can be made from the DSMC results, allowing for an under-
standing of the �uid dynamics of the trail. From Fig. 6.5, the temperature and velocity
�elds appear to reach the freestream conditions quickly as the trail develops, while the
density seems to require much more time. This is con�rmed by inspecting the �ow�eld
quantities along the trail axis, shown in Fig. 6.8.
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Figure 6.8: Flow�eld quantities along the trail axis.

The behavior of density requires further investigation: despite temperature and veloc-
ity monotonically approach the freestream conditions, density initially increases towards
the freestream value of 5.69× 10−5 kg/m3, but around 30 diameters from the body de-
creases again. This observation is crucial for the study of elementary processes in the
trail: a longer domain is required if a detailed solution is sought in terms of chemistry.

Cross sections at various locations along the trail axis were extracted from the DSMC
simulation and results are shown in Fig. 6.9. The �rst line (green) is located at x =
0.025 m, while the last one (red) is located at x = 0.2 m. The trail size is clearly visible
from the �rst line in the density plot: the density starts very low at the axis, raises
through the di�use shock layer (see Fig. 6.5) and �nally reaches freestream values at
a radial position r = 0.03 m. Marching along the trail, the density pro�le is advected
outwards: this is due to a vertical velocity component of the streamlines (Fig. 6.9). This
component eventually vanishes, and the behavior is expected to reverse at a certain point
along the trail: streamlines are likely to converge again towards the trail axis, until the
density will �nally reach the freestream values. The behavior of density in the �eld is
thus explained by the vertical component of the velocity. An analysis of the streamlines
is given in Appendix A.1, where the density behavior is explained graphically.
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Figure 6.9: Velocity components and density at cross sections along the trail.

Fluid dynamic regions composing a meteor

From what was discussed in the preceding paragraphs, it's possible to decompose the
meteor phenomenon in three regions showing di�erent �uid dynamic features:

Region i): �rst of all we have the front region. Near the body a strong shockwave
develops, the temperature raises and a big quantity of free electrons are produced
and advected to the next region.

Region ii): the trail starts developing and the temperature, velocity and density grad-
ually approach freestream values. This region was partially simulated and analyzed
in this work.

Region iii): �nally, �ow quantities reach freestream values. At this point electrons
are expected to still be present: if so, they keep di�using in the surrounding and
reacting until their concentration completely vanishes.

The DSMC solution deeply analyzed in the previous sections don't take recombi-
nation reactions into account. One question arises: would the �ow features change if

recombination is taken into account? Fortunately, it's not the case. Recombination reac-
tions are exothermic and would clearly change the temperature �eld, however as shown
in Appendix A.3, the role played by chemistry quickly becomes marginal from the �ow
�eld point of view as the trail develops.

Although apparently disconnected from the quest for electrons in the meteor trail,
the trail �ow properties discussed in this section will have important consequences in the
solution strategy adopted in the next sections.
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6.3 Intermediate conclusions: need for an alternate approach

A number of results were obtained in the previous sections. The meteor trail was sim-
ulated using a DSMC approach and a solution for the free electrons concentration was
obtained. Such result predicts a large number of electrons in the trail, able to totally
re�ect radio signals sent by meteor detection stations. In particular, the predicted ion-
ization degree is so high that even at the exit of the simulated domain the trail seems
able to totally re�ect radio signals.

Issue 1: no recombination

The shown results are however a�ected by a strong limitation: the employed DSMC
method is not able to compute recombination reactions, so that a fundamental mechanism
in the evolution of free electrons is missing. This might be the reason why the predicted
ionization degree is so high, further investigation is thus required.

Issue 2: huge computational domain

The �recombination issue� is just one Achilles' heel of the DSMC approach. A second
disadvantage arises: if the ionized portion of the trail would be much longer than the
currently simulated distance, as the previous simulations seems to suggest, additional
simulations would need to be performed, this time on a vastly longer domain - which
would imply prohibitive computational times.

VKI's answer to the problem

In the next section, the Lagrangian approach developed in this work will provide an
answer to those issues. The computed DSMC results will be used as a baseline simulation
and fed to the Lagrangian reactor, that will recompute the concentration of chemical
species, this time including recombination among the reactions.

The application of the Lagrangian reactor is legitimated by a number of results ob-
tained in the previous sections. In particular, it should be noted that:

• Streamlines are found to be almost parallel and well aligned to the symmetry axis
(v � u, see also Appendix A.1). The x-integration marching approach is thus
applicable;

• The analysis of the particles' velocity distribution reveals that the population is
Maxwellian to a good approximation. The Lagrangian approach, that introduces
di�usion properties based on continuum assumptions, can thus be applied.

The following sections will proceed as follows:

1. The Lagrangian reactor will be applied to recomputing the electron density from
the DSMC simulation, tackling the �rst region of the trail, de�ned �region (ii)�;

2. The residual electrons concentration will be found to be still very high at the exit of
the computational domain. The Lagrangian reactor will then be applied to region
(iii) and the electron density will be determined for a length of 2 km.
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It is interesting to remark that the study of the ionization in region (ii) of the trail
is fundamentally novel in the meteoric �eld. The common approach in fact models the
whole trail as if it was directly in the freestream conditions. Since the ionized trail
is extremely long (some km), an accurate description of region (ii) may seem just an
academic exercise, but it's not the case: in fact, it will be shown that around the 30%
of electrons recombine in this region. The determination of the number of electrons that
survive region (ii) and keep evolving along the trail is thus to be obtained by taking into
account the detailed structure of region (ii), where lower density zones are present, as well
as overshoots. Those e�ects are automatically taken into account with the simulations
performed in the next sections.

6.4 Lagrangian simulations of meteor trails

In the last part of this report, the Lagrangian reactor developed in this work will be
applied to the study of the free electrons concentration in meteor trails. The �nal result
will be a map of electrons number density up to a distance of 2 km.

As seen in Section 6.2, the meteor phenomenon can be divided from the �uid dynamics
point of view in three regions, schematically shown in Fig. 6.10:

Region i): near the meteoroid a strong shockwave develops, temperature raises and
the bulk of free electrons is produced.

Region ii): after the meteoroid, the trail development begins and �ow quantities such
as density and velocity approach the free-stream values.

Region iii): in the (very long) remaining part of the trail the �ow�eld is almost uniform
and residual free electrons di�use and recombine with ions.

region (ii)region (i) region (iii)

d O(100 d) O(km)

T ≈ TFS

ρ ≈ ρFS

U ≈ UFS

Figure 6.10: Fluid dynamic regions in meteoric �ow. Drawing not in scale.

A DSMC solution was obtained for region (ii) but was lacking in terms of chemical
modeling since recombination of free electrons was not computed. The �rst step of this
chapter will consist in recomputing the concentration of chemical species in this region
using the Lagrangian reactor. A map of free electrons will be obtained in region (ii).
Finally, the evolution of electrons surviving region (ii) will be studied in region (iii), up
to a distance of 2 km.
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It should be noted that the supersonic nature of the �ow ensures that information
does not travel backwards5. As a result, each section of the trail can be treated separately,
with initial conditions taken from the exit of the previous one.

6.4.1 Lagrangian reactor in the close-region

As explained in Chapter 5, the idea behind the Lagrangian reactor consists in starting
from a baseline simulation, extracting the velocity and density �elds and recomputing the
remaining quantities: temperature and concentration of chemical species. The procedure
for correcting the DSMC simulation is composed by two steps:

1. Streamlines are extracted from the DSMC simulation in terms of velocity, density,
temperature and concentration of species;

2. The streamlines are fed to the Lagrangian solver LARSEN, that returns an improved
map of chemical species and temperature.

The computational domain is shown in Fig. 6.11 and is taken from the DSMC simula-
tion, starting from 2 diameters after the meteoroid surface and extending to 35 diameters
from the meteoroid. The domain is seen to follow streamlines.
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Figure 6.11: Domain for the Lagrangian re�nement of region (ii). Meteoroid not in scale.

It should be stressed that the Lagrangian solver takes the initial temperature and
chemical species composition from the beginning of the streamlines, that is from the inlet
of the DSMC computational domain. The starting composition is thus the same as for
DSMC simulations, while the evolution may change according to the models enabled.

In this section of the trail the velocity �eld changes considerably. The enthalpy
variation along the streamline is thus taken externally, as discussed in Chapter 5.

As a �nal note, while the DSMC simulation is inherently multi-temperature, the
current implementation of the Lagrangian solver LARSEN assumes thermal equilibrium.
The development of a T -Tv version of the solver is suggested as a future activity.

5As long as di�usion processes are neglected in the streaming direction. This is the case in the current

problem.
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Direct comparison with DSMC: no recombination

As a preliminary attempt, the Lagrangian solver was applied to the DSMC solution by
switching o� recombination reactions. In this way the solver mimics the DSMC solution,
where no recombination occurs and the electrons concentration decreases only due to
di�usion processes. The free electrons density was then extracted at the exit of the
domain (x = 0.35m) in the radial direction and is shown in Fig. 6.12.
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Figure 6.12: Number density of free electrons at the exit of computational domain.
Chemical reactions switched o�.

As can be seen, results from DSMC and Lagrangian solver are surprisingly close to
each other although:

• The DSMC method is a particle-based method, while the Lagrangian solver is
continuum-based: transport properties are computed using di�erent models;

• The trail is rare�ed and partly out of equilibrium (as discussed in Appendix B)6

Due to the capability of reproducing DSMC results, the Lagrangian solver is believed
to provide a reliable solution in terms of electrons di�usion. It should be noted that
as the trail develops, the particles tend to reach thermodynamic equilibrium and the
continuum solution is expected to become more and more precise.

Di�usion vs recombination e�ects

In the introduction, an analysis of the third Damköhler parameter suggested that the
e�ects of di�usion could be estimated to be dominant over recombination. In this para-
graph this statement is con�rmed via numerical analysis. Two simulations are performed:
in one electrons are free to di�use in the surrounding but do not recombine with ions, in
the other one recombination is allowed but di�usion is not.

6Actually, Appendix B provides an explanation to this fact, based on the quasi-Maxwellian nature of

the distribution function in the trail.
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Figure 6.13: Number density of free electrons computed by LARSEN. Top: only di�usion.
Bottom: only recombination. Meteoroid included for dimensions comparison.

Results are shown in Fig. 6.13 and clearly show that the prediction based on the
Damköhler parameter was correct. In fact, in the simulated �ight conditions, the �ow is
rare�ed and this drastically reduces the number of molecular collisions that can lead to
recombination reactions. This fact is especially true in the core of the trail, where the
density is even lower as discussed in Section 6.2: the electrons concentration is seen to
be particularly persistent in time.

Lagrangian correction of DSMC results

Finally, in this paragraph the Lagrangian solver will be applied to an improvement of the
DSMC solution. Both di�usion and recombination e�ects have been introduced by the
Lagrangian solver and results are shown in Fig. 6.14. Those results provide the sought
map of free electrons in region (ii).
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Figure 6.14: Number density of free electrons corrected by LARSEN.

In order to estimate the importance of the Lagrangian correction, that adds recom-
bination to the initial DSMC �eld, the result is compared to an additional simulation
where chemistry was switched o�. The free electrons concentration at the exit is given in
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Fig. 6.15 and clearly shows that chemistry plays a signi�cant role.7 This result justi�es
all the e�orts undergone in the development of the Lagrangian solver, since a very big
improvement with respect to DSMC is shown.

The e�ect of recombination reactions in this �rst part of the trail is seen to generate
a big variation in the number density of free electrons, reaching values of 40% at the
core of the trail. A parameter often used in the meteor modeling �eld is the line density
of electrons, that can be obtained by integrating the (volume) number density over the
cross sectional area:

neline =

∫
S
neR dR dθ = 2π

∫ ∞
0
neR dR (6.2)

where the axial symmetry was introduced. This parameter gives more importance to
the electrons at the sides of the trail and less to the core, due to the cylindrical nature of
the �ow. By comparing this parameter for the two simulation, still big changes can be
seen, the free electrons line density being inferior by the 28% if recombination reactions
are taken into account.
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Figure 6.15: Number density of free electrons at the exit of computational domain. E�ect
of chemical reactions.

Those results remark how important is to take into account both di�usion and recom-
bination processes if the density of free electrons in the trail is sought. While di�usion is
absolutely prevalent in those �ight conditions, recombination still plays a very important
role.

Is should also be recalled that the obtained results depend on the particular �ight
condition that is simulated. Di�erent altitudes, velocities and meteoroid sizes would
probably generate very di�erent results, with recombination becoming more and more
important at lower altitudes.

7This does not contradict the estimation done with the Damköhler parameter, that is only stating

that the e�ect of di�usion is much bigger. In fact, while chemistry changes the value by around the 30%,

di�usion reduces the number density by approximately two orders of magnitude.
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From the performed simulation, the number density of free electrons is found to be
high enough to generate a total re�ection of incoming radio signals. In fact, as reviewed
by Pellinen-Wannberg et al. in [33], radio devices operating in the UHF band can detect
free electron number densities as low as 1016 m−3, while VHF devices such as the BRAMS
Network [4] can go even below, up to 1014 m−3. An extended domain is thus to be taken
into account and is the object of the next section.

6.4.2 Lagrangian computation of the far trail

The analysis of the free electrons performed in the previous section predicts that a big
number of electrons is still present at the exit of region (ii), enough to generate a total
re�ection of incoming radio waves. In other words, the trail length e�ectively re�ecting
radio signals is longer than what was simulated in the previous section. In this paragraph,
the Lagrangian solver is applied to a further extension of the computation, up to a
distance of 2 km from the meteoroid.

As was discussed in Section 6.10, the �ow�eld quantities evolve along the trail, ap-
proaching freestream conditions. Region (iii) was in fact de�ned as the region of the trail
where the velocity and density reached uniform freestream values. Thus, if a solution
is obtained for region (ii) in terms of species concentration, this data could be used as
initial value and the Lagrangian solver could be applied to the simple �ow conditions of
region (iii) determining the free electrons distribution in the remaining of the trail. This
is what is done in this section.

Unfortunately, the simulation performed of region (ii) proved to be insu�cient for the
density to completely reach freestream values. This fact will be neglected in this work,
the main goal being linking all the necessary steps and building a sound �uid dynamic
methodology for studying meteor trails. Obtained results will thus be approximated, but
still more realistic than the currently employed state of the art methods.

The computational domain for this extended simulation is a box of 2000 m × 4 m,
shown in �gure Fig. 6.16. Initial conditions are taken from the outlet of the previous
simulation on region (ii) and speci�ed at the inlet of this new computational domain. The
speci�ed initial conditions change from one streamline to the other in terms of electrons
concentration and temperature, while the density and velocity are, as said, are taken
equal to the freestream values (6.2).

In this simulation heat transfer is computed by the Lagrangian reactor in the radial
direction, resulting in a progressive cooling of the trail until freestream conditions are
reached. The result is shown in terms of free electrons concentration in Fig. 6.17. Only a
portion of the computational domain is shown and was scaled to appreciate the di�usion
phenomena.

This result is the �nal outcome of the current work.
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Lagrangian solver. Axis are scaled.

Analysis of the recombination process

The e�ect of recombination reactions can be understood by observing the total amount of
ions and free electrons8 on a cross section at a given trail position. In fact, this quantity
changes only due to chemical reactions, since di�usion simply redistributes radially the
species. The number density of species (atoms or molecules per cubic meter) was thus
cumulated on the cross section according to equation 6.2, giving the number of molecules
per unit length along the trail.

Fig. 6.18 clearly shows how recombination takes place: �rst of all a part of free
electrons recombines with theN+

2 ions, determining the �rst part of electrons diminishing.
A very small quantity of NO+ can be spotted in the initial part of the trail, contributing
to the free electrons balance only in very small quantity. The second species to start
recombining is N+, and the third one -although this cannot be appreciated from the
performed simulation- will probably be O+, as discussed in the following.

The explanation of this phenomena is conceptually simple: the ionization energy of
N2 is the highest, so that at low temperatures electrons easily recombine. The second
recombination mechanism is seen to happen for N , whose ionization energy is smaller
than N2 but bigger than O. The ionization energies for those three species are reported

8Actually, those quantities are the same due to the ambipolar assumption employed in this project.
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in table 6.5, from the NIST WebBook [34].

species ionization energy [eV]
N+

2 15.5
N+ 14.5
O+ 13.6

Table 6.5: Ionization energy for the main ions in the air gas mixture.
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Figure 6.18: Line density of ions and electrons along the trail, up to 2 km from the
meteoroid.

Such recombination path is obviously based on the chemical mechanism used in the
simulation, that in this work was taken from [25]. However, although the qualitative
behavior could have been guessed a priori, a quantitative prediction needs to couple the
chemistry with di�usion e�ects due to the dependence of chemical rates on the local
concentration of chemical species.

It is possible to predict on qualitative grounds what the behavior of the recombining
trail would be at di�erent altitudes: in fact, the simple problem of isothermal recombi-
nation admits a self-similar solution with respect to the the variable P 2t, so that at a
given the altitude the recombination times can be qualitatively estimated. The reason
for the similar behavior lies in the nature of recombination reactions, that arise due to
three-body collisions and is treated in more detail in Appendix C.

Once a map of free electrons is obtained, it can be plugged into an electromagnetic
solver able to quantitatively study the scattering process for radio waves and a received
signal can be reconstructed. A series of calculations on meteoroids of di�erent sizes can
be performed following the same path that was developed in this work, and a database
can be thus obtained for a quick interpretation of received radio signals.

Finally, modeling ablated species in the trail is also possible with the developed
approach: what is needed are initial concentrations of species, together with the necessary
thermodynamic and transport properties of ablated elements.
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Conclusions and future work

7.1 Conclusions

In this work, a methodology for studying free electrons in meteor trails was proposed.
This methodology has its roots in �uid dynamics and �lls a gap in the literature, where
the �uid nature of the problem is brutally approximated or even neglected. During this
work the importance of a careful �ow modeling was highlighted, showing deviations of the
results up to the 30% if a comprehensive treatment of both di�usion and recombination
is not performed.

As de�ned in the beginning of this work, if an accurate description of the free electrons
evolution in meteor trails is sought, some key points need to be considered:

Consideration 1) Meteor trails are �uid dynamics entities and the current state of
the art neglects this fact. Moreover, they are typically rare�ed;

Consideration 2) Trail simulations require detailed chemical mechanisms to be ac-
counted for and current rare�ed �ow solvers cannot properly introduce them;1

Consideration 3) Trails are very extended in size and classical methods prove to be
exceedingly computationally demanding.

Those facts have been directly addressed in this work, obtaining a result for each of them:

Result 1) Simulations of the �ow around and past a meteoroid were performed and
the trail was characterized from the �uid �ow point of view, de�ning its three
composing regions. Simulations were performed with the DSMC method, vastly
used in the aerospace �eld and tailored to rare�ed �ows.

Result 2) A Lagrangian reactor able to introduce detailed chemical models in previous
baseline simulations was developed. The solver provided a correction of the per-
formed DSMC simulations, introducing recombination reactions and thus providing
a map of free electrons in the �rst part of the meteor trail (Fig. 7.1).

1Recombination reactions in DSMC solvers are still an open issue.
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Result 3) The Lagrangian nature of the developed solver makes it particularly lightweight:
thanks to this property it was possible to simulate a very long trail, with an exten-
sion of 1 km.

The reactive �uid dynamics software here developed was based on a previous work
of the author at VKI [29]. In this work the validity of the decoupling performed by this
solver is discussed and seen to be valid for the tried testcases.

The current work focused on making this solver suitable for meteor trails analysis.
In particular, this implied implementing processes of mass and energy di�usion. The de-
veloped solver was veri�ed against simple testcases for both di�usion of mass end energy
in 2D Cartesian and axisymmetric geometries. An additional a posteriori veri�cation
for the mass di�usion implementation was obtained by comparing the results with the
meteor DSMC: results are close to each other and the di�usion process seems thus well
captured by the Lagrangian reactor.
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Figure 7.1: Simulation of free electrons in the near trail of a meteor.

From the performed trail computations, it was found that the ionized trail is very
persistent at the �ight conditions studied (entry velocity of 20 km/s and altitude of 70
km). In fact, for a meteoroid of 1 cm diameter the ionized portion of the trail was found
to exceed a length of 1 km.

The map of electrons obtained in this project can be fed to an electromagnetic soft-
ware and an estimation of the re�ection of radio waves can be obtained. In this way, it's
possible to create a database of meteor trails and received experimental signals can be
used to estimate the size of incoming meteoroids.

The developed Lagrangian tool, named LARSEN, is able to obtain in a matter of min-
utes - on a laptop - a result that would otherwise require probably weeks of computation
on modern supercomputers if the DSMC method would be used. All the gain is due to
the parabolic nature that the equations assume when longitudinal di�usion is neglected,
an approximation holding well in meteor trails.

7.2 Not only meteors: other applications

Although applied to the study of meteor trails, the Lagrangian reactor LARSEN was de-
veloped to be as general as possible. In the near future the code will be applied to a
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number of di�erent applications, a few of them are here provided as an example.

Blackout around the ExoMars capsule

The entry phase of the ExoMars capsule in the Mars atmo-
sphere led to a period of interruption of radio communications
due to the formation of a layer of ionized gas, re�ecting away
radio waves and thus shadowing the capsule antenna.
This issue is a well known phenomena in the atmospheric entry
of capsules and is known as telecommunication blackout.
The Lagrangian reactor will be applied in the next future to
this testcase, trying to reproduce experimental results.

Nonequilibrium population of xenon gas in hall-e�ect thrusters

Recently, very detailed models became available for
the energy levels of xenon gas. Their interaction can
be studied using a �state to state approach�, where
the energy levels are treated as pseudo-species and
the exchange of energy as pseudo-chemical reac-
tions.

The Lagrangian solver will be applied to the determination of the energy level excitation
in the plume of a hall thruster starting from a simulation of a few levels only.

7.3 Future work

In this section, some future work directions are suggested for both the development of
the Lagrangian solver LARSEN and for the modeling of meteor trails.

Further development of LARSEN

The developed solver is now able to treat chemical reactions as well as di�usion of mass
and energy across streamlines. Further implementation could extend the power and range
of applicability of the solver. In particular, suggested developments are:

• Implementation of multi-temperature models, starting by a two temperatures T -Tv
approach. This would allow to take into account nonequilibrium �ows as well.

• Implementation of collisional-radiative models and radiative processes (for exam-
ple the radiative recombination process N++ e−→ N + hν). This would allow for
the description of nonequilibrium among energy levels and also provide additional
recombination mechanisms to free electrons.

• Implementation of barotropic di�usion and Soret e�ect in the mass di�usion model.
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• Implementation of the power of viscous forces in the energy equation, rightfully
neglected in meteor trails but important in other types of �ow.

• Veri�cation of the implemented mass and energy di�usive �uxes for non-trivial
testcases, using CFD and DSMC approaches.

Simulations of meteor trails

Regarding the modeling of the meteor phenomenon and in particular the simulation of
free electrons in meteor trails, some suggestions for future work are:

• Repeating the performed simulations with more complex air chemical models.

• Adding ablated species into the trail and studying the e�ect of di�erent meteoroid
chemical composition on the trail shape.

• Applying an electromagnetic solver to the computed maps of free electrons to obtain
the entity of the re�ected signal. Raytracing programs could be used as an initial
step, to assess whether the radio wave is able to penetrate the trail or is totally
re�ected, at a given free electrons density.

• Performing a series of simulations on meteoroids of di�erent sizes and velocities to
obtain a parametric study of how characteristic trail quantities (such as the length
and maximum diameter of the ionized region) depend on the meteoroid dimension
and �ight conditions.



Appendix A

More on DSMC simulations

In this appendix are shown more details and results on the performed DSMC simulations
of meteors.

A.1 Streamlines for the DSMC simulation

This annex brie�y analyzes the streamlines behavior as found from the DSMC simula-
tions performed in chapter 6. In section 6.2, the density was seen to follow a di�erent
behavior than the velocity and temperature �elds. In fact, while the latter two mono-
tonically approach freestream values along the trail, the density �eld is found to start
increasing but soon it decreases again. The reason for this behavior was attributed to
the vertical component of the velocity �eld: this annex supports this hypothesis showing
the streamlines behavior in the trail.

Figure A.1: Streamlines near the meteoroid, reconstructed from DSMC solution.

Fig. A.1 shows the streamlines near the meteoroid, as reconstructed from the DSMC
solution. As can be seen, right after the meteoroid some streamlines tend to �ll the trail,
thus causing an increase in the density. A scaled view of the streamlines allows for a
better interpretation and is provided in Fig. A.2.

Fig. A.2 provides a more intuitive view of the �ow behavior. Initially streamlines
�ll the trail, as previously said, and correspondingly the density along the trail increases
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Figure A.2: Streamlines reconstructed from DSMC solution, scaled view in the x direc-
tion.

(section (A) in the �gure). In the meanwhile, streamlines above cross the di�used bow
shockwave and extend vertically (section (B) in the �gure). This vertical movement has
the e�ect of �pulling up� the streamlines in the trail (section (C) in the �gure), thus
generating a further decrease in the density along the axis.

This interpretation is coherent with the density plot along the axis, given in Fig. 6.9,
where around the position x = 0.3 m the density stops raising and starts decreasing
again. Eventually, as freestream conditions are reached, streamlines will close again to
meet the initial con�guration.

A.2 Simulations at di�erent entry velocities

This appendix compares two DSMC simulations of a 1 cm meteoroid at an altitude of
approximately 70 km. Two �ight speeds are compared: 20 kms and 72 kms. Those simu-
lations are approximately located at the boundaries of the entry velocities of meteoroids
in the Earth's atmosphere, usually ranging from 12 to 72 km/s.

Fig. A.3 shows a comparison of the temperature �elds around the body and in the
�rst region of the trail. An increased temperature is seen for the higher velocity case,
where the value is one order of magnitude higher. It's important to recall that at the
considered rarefaction conditions, those temperatures are geometrical temperatures, as
discussed in section 4.4, and are not indicative of the thermal agitation of the gas.

The number densities are compared in Fig. A.4. The simulation at higher velocity
shows a much more well-de�ned trail: the contribution of mass di�usion with respect to
advection is smaller in the higher velocity trail and the result is a much more extended
region of low density in the shadow of the meteoroid.
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Figure A.3: Comparison of temperature �elds. Top: 72 km/s. Bottom: 20 km/s.

nmax = 1.74E+24 m-3

nmax = 1.77E+23 m-3

Figure A.4: Comparison of number density �elds. Top: 72 km/s. Bottom: 20 km/s.

A.3 E�ect of chemistry on �ow�eld quantities

In chapter 6, DSMC simulations were discussed and features of the �ow�eld were ana-
lyzed. The question of whether such features would drastically change if electrons recom-
bination would be modeled arose: this question is partially answered in this appendix.
An additional simulation was thus performed switching o� totally chemical reactions and
results were compared with the reactive simulations discussed in the main work. This
allows to test how strong is the link among chemistry and �ow quantities.

The freestream air mixture is composed by molecular oxygen and nitrogen only, in
the same conditions as the testcase of chapter 6.

Figure A.5: DSMC computational domain for comparison among chemical models

Fig. A.5 shows the computational domain, that extends up to 0.775 m, or 77.5
meteoroid diameters. Flow quantities have been extracted along the trail axis and are
shown in Fig. A.6 and A.7.
Some observations can be made:

• the velocity �eld is almost identical for the two simulations

• the density �eld as computed with the two models initially di�ers, but after 0.3 m
(30 diameters) results are again the same
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Figure A.6: Comparison of velocity and density for the two chemical models.
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• the pre�cted translational and rotational temperatures are very close to each other
for the two models. The vibrational temperature is the one that changes most.

A departure of results in terms of temperature is expected since chemical reactions
release or adsorb energy. However, the di�erence is seen to be relatively small in the
long-run. The models departure is bigger for the vibrational energy, which is notoriously
linked to chemical reactions.

To sum up, the main features of the �ow�eld - the velocity and density �elds - are
seen to vary little even with a complete variation of the chemical model. This provides a
good reson for trusting the employed Lagrangian approach, where an initial simulation
is recomputed and deeply re�ned by the Lagrangian reactor. In fact, one may argue
that baseline simulations with di�erent chemical models might lead to very di�erent
results when the Lagrangian re�nement is applied: those results suggest that this is not
necessarily the case since even an extreme perturbation to the chemical model (chemistry
totally switched o�) is shown to generate relatively small deviations.

Of course, the preceding statements are limited to the present case-study.
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Appendix B

Statistical analysis of the trail

As discussed in chapter 4, the DSMC method is a stocastic way of solving the Boltzmann
equation. As such, the information carried in the DSMC solution is not limited to
the temperature, velocity and density �elds, but is much richer: the DSMC method
provides an estimation of the velocity distribution function, carrying information on the
microscopic state of the gas in each point of the domain. In fact, temperature, velocity
and density are just mathematical moments of the velocity distribution function.

In this section, the velocity distribution of particles is extracted from the solution
and analyzed. Three points at di�erent trail locations are here compared, their position
being schematized in Fig. B.1.

1.69E+50 Translational temperature [K]

(A) (B) (C)

0 0.02 0.04 0.06 0.1Position [m]-0.04 0.08

Figure B.1: Sampled points for distribution function analysis.

From a practical point of view, the DSMC software was asked to output on a �le the
properties of the particles located in a certain grid cell. Particle properties are collected
for a big number of timesteps and the distribution of velocities is obtained. Although
conceptually simple, obtaining a smooth distribution from the DSMC sampling requires
collecting a huge number of particles and this implies heavily increasing the number
of timesteps and thus very long simulation times. For practical reasons, results shown
here are thus obtained for a non-reacting mixture, since switching o� the computation
of chemical reactions considerably speeds-up the simulation. Results are believed to be
indicative for the reacting simulations as well, at least from a qualitative point of view.

The raw data was used to compute a distribution of velocities for the particle in the
sampled cells and the result is shown in Fig. B.2 for the three trail locations. The plotted
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curves represent the number of particle with a certain velocity cx or cy respectively in
the x and y direction. Those curves are thus closely related to the marginal velocity
distribution functions f(cx) and f(cy), the di�erence being merely a matter of scaling.
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Figure B.2: Velocity distribution of particles at three locations along the trail.

It can be observed that the velocity distribution in the radial direction shows two
peaks. This feature is due to the rare�ed nature of the considered �ow and can be
explained by the fact that atoms or molecules in a rare�ed gas travel long distances
before colliding with another particle. Some molecules located above the axis, are then
able to reach it with a �nite velocity and cross it, as shown in Fig. B.3. The same happens
for molecules located below the axis, so that if the average is computed, the velocity is
found to be parallel to the symmetry axis and the basic principle that �streamlines don't

cross each others� is of course respected. The two peaks are seen to quickly merge into
one and the shape of the velocity distribution starts resembling a Maxwellian already
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Point (A) Point (B) Point (C)
T [K] 42 374 24 749 17 151
Tx [K] 45 115 29 382 20 077
Ty [K] 41 274 22 269 15 601
Tz [K] 40 694 22 596 15 776

Table B.1: DSMC simulation: anistotropy of temperature along the trail axis.

after a few diameters in the trail.

Figure B.3: Sketch for streamlines approaching the symmetry axis.

From this information over the particle velocities it's possible to obtain the distri-
bution function and temperatures can be computed in the two velocity directions. As
explained in chapter 4, although the temperature is classically depicted as a scalar �eld,
anisotropy may be observed at the molecular scale. In particular, the temperature was
computed from the distribution functions in the three axis directions x, y and z and are
found to be slightly anisotropic. The values are compared in table B.1.

As the trail develops, those values collapse on each other as e�ect of the thermaliza-
tion. Two observations can be made:

• the radial temperatures Ty and Tz are very close to eachother, in fact those di-
rections are totally equivalent, both being radial and perpendicular to the trail
axis

• the longitudinal temperature Tx is seen to be higher than the radial ones and the
temperature T accordingly results having a value which is intermediate among
them.

The reader is referred to chapter 4 for more explaination on those e�ects, usually
neglected in classical �uid dynamics.

The results obtained in this section are qualitative, but of big impact: they consti-
tute the basis for section 6.4 - the application of the developed Lagrangian solver. The
fact that the velocity distributions quickly approach a Maxwellian and the temperature
becomes isotropic allows us to use models that are characteristic of the continuum. In
particular, di�usion models for mass and energy implemented in the LARSEN solver are
inherently based on the continuum assumption. Chemical reaction rates are also based
on continuum assumption, in that the Arrhenius law is formulated in the assumption of
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Mawellian (gaussian) distribution. Those results basically legitimate the application of
continuum methods in the analysis of the trail, which is the goal of section 6.4.



Appendix C

Similarity variable in isothermal

recombination

In this appendix, the simple case of isothermal recombination is addressed and a similarity
variable is identi�ed. This problem somehow mimics the behavior of free electrons in the
last part of a meteor trail, where the temperature and pressure are uniform and equal
to the free stream conditions, but a number of electrons still await for recombination to
occurr.

A sample reaction will be analyzed, but results hold in general for three-body collisions.
The chosen reaction is three body recombination of an electron to an ion M+:

M+ + 2e− →M + e− (C.1)

Charge neutrality imposes that [M+] = [e−], where the square brackets denote the
molar concentration [mol/m3]. Using the law of mass action, the concentration of free
electrons in time is described by:

d[e−]

dt
= −k [M+][e−]2 (C.2)

where k is the recombination rate coe�cient. Exploiting the charge neutrality con-
dition and manipulating the equation:

1

[e−]3
d[e−] = −k dt (C.3)

The solution in time is easily found to be:

[e−](t) =

[
1

[e−]0
+
k

2
(t− t0)

]−1/2
(C.4)

where the subscript 0 refers to the initial condition.
If the de�nition of the molar concentration is then introduced, [e−] = ne/NA, the solution
can be written as:
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ne(t)

ne0
=

1√
1 + k

2

(
ne
0
NA

)2
(t− t0)

(C.5)

And �nally, introducing the perfect gas equation n = P/kBT and the de�nition of
the molar fraction Xe = ne/n, gives:

ne(t)

ne0
= f(P 2t) =

1√
1 + 1

2kBT 2

(
Xe

0
NA

)2
P 2t

(C.6)

The solution is thus seen to only depend on the similarity variable ξ = P 2 t. Three-
body recombination due to collision with molecules other than electrons as a third body
provide the same dependence.

A number of numerical simulations were performed at various altitudes to compute
the recombination of free electrons in an air mixture, starting from a totally ionized case.
Fig. C.1 and C.2 show the values for temperature and pressure at various altitudes,
according to the 1976 standard atmosphere. Values were extracted for altitudes from 20
to 80 km.
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mic scales.

The results of the recombination simulations are shown in Fig. C.3, where the time
was plotted logarithmically for ease of representation.

Since at every altitude the number density is di�erent, the value is adimensionalized
by the initial number density of free electrons. The result is shown in Fig. C.4.

If �nally the scaling suggested is applied to the horizontal axis, the curves at the
various altitudes are seen to collapse on one only curve, as shown in Fig. C.5.

Finally, the process is valid for all the three body recombinations, even among non-
ionized species, so that the whole mixture is seen to follow the scaling.
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Figure C.3: Recombination process at di�erent altitudes.
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From the similarity solutions, a characteristic time can be extracted (based for ex-
ample on a recombination equal to 99%) and a crude estimation for the lifetime of free
electrons in the meteor trail can be found.

The e�ect of the freestream temperature can be studied as well, and is shown in Fig.
C.7.
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