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Abstract

In this work, a Lagrangian solver for nonequilibrium reacting flows is devel-
oped. The solver acts as a multi-temperatures chemical reactor following a
fluid particle along pre-computed streamlines, integrating the governing equa-
tions with initial conditions picked from the first point of the streamline. The
result is obtained in terms of temperatures and mass fractions of chemical
species.

The developed Lagrangian reactor might be used to refine a previous rough
numerical computation, introducing more sophisticated chemical mechanisms
and optionally thermal nonequilibrium.

The Lagrangian solver is applied to the study of thermochemical relaxation
past a 1D shock, to hypersonic argon flows over a cylinder at various degrees of
rarefaction and to the problem of computing the recombination of free electrons
in the trail of a meteoroid entering the Earth’s atmosphere at hypersonic
velocities.

Sommario

Il presente lavoro tratta lo sviluppo di un solutore Lagrangiano per correnti
fuori equilibrio termico e chimico. Data una streamline proveniente da un
calcolo eseguito tramite qualsivoglia metodo numerico, il solutore si comporta
come un reattore chimico che integra le equazioni di governo seguendo la par-
ticella fluida. Le condizioni iniziali per I'integrazione vengono prese dal punto
iniziale della streamline e la soluzione e fornita in termini di temperature e
frazioni massiche delle specie chimiche.

11 solutore sviluppato puo essere utilizzato per raffinare una precedente sim-
ulazione numerica semplificata, introducendo meccanismi chimici piu elaborati
ed opzionalmente nonequilibrio termico.

Nel presente lavoro, il solutore Lagrangiano viene applicato ad alcuni casi
test: lo studio del rilassamento termochimico nella regione post-shock di un’urto
normale, una corrente ipersonica di argon attorno ad un cilindro a vari gradi
di rarefazione ed infine al calcolo della ricombinazione di elettroni liberi nella
scia di un meteorite durante il suo ingresso atmosferico a velocita ipersonica.
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CHAPTER 1

Introduction

This thesis was developed during an internship at von Karman Institute for
Fluid Dynamics, Rhode-Saint-Genese, Belgium.

1.1 Motivation

Studying hypersonic flows requires dealing with a variety of physical phe-
nomena experienced at the microscopic level by atoms and molecules, often
leading to results that are very different from the classical solutions of super-
sonic aerodynamics. Those phenomena include chemical reactions, excitation
of vibrational degrees of freedom, ionization, radiation and the challenges are
twofold:

i) modeling phase presents non-negligible difficulties, also due to the fact
that experimental data are highly inaccurate due to the extreme condi-
tions that should be reproduced in experiments

ii) simulation phase currently requires way too many computational efforts
to perform a complete modeling of the physics.

Nowadays, the mostly used numerical tools are the Direct Simulation Monte
Carlo method (DSMC), for rarefied flows, and CFD methods, to be applied in
the continuum regime. Both methods suffer from the limitations mentioned
above: for instance, the computational cost of the DSMC method becomes
prohibitive when interactions among particles involve too many chemical re-
actions. Simulating many chemical species decreases the accuracy of DSMC
simulations, in that longer time averages or a higher number of simulated par-
ticles are needed to obtain a smooth-enough solution. The second point is
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also the Achilles’ heel of CFD methods, that are forced to drastically sim-
plify the physics of the problem since simulating too many species or internal
temperatures would lead to large algebraic systems to be solved.

Finally, DSMC simulations suffer from difficulties in modeling three body
collisions, that also leads to difficulties in implementing reassociation reactions.

This thesis is aimed at developing a solver that might correct the men-
tioned modeling deficiencies of numerical simulations, by partially recomput-
ing results introducing more elaborate chemical or thermal modeling.

1.2 Aim of the work

This work is aimed at developing a Lagrangian solver for hypersonic flows
out of equilibrium, able to implement arbitrarily complicated chemical models
and various degrees of internal nonequilibrium. In order to do that, the solver
does not provide the solution of the governing equations on a whole multidi-
mensional domain, but starts from a baseline simulation and recomputes the
results along a given streamline by introducing new chemical mechanisms and
internal temperatures.

The governing equations along the streamline are a set of ODEs and the
solver acquires a particularly lightweight structure, so that all the saved com-
putational time can be invested in solving a more complicated thermochemical
model.

This solver is based on the hypothesis that the velocity field may be as-
sumed as given from the baseline reference simulation and as a result, also the
density field will be taken as given, as explained in section |3.2l This hypothesis
is quite strong, in that modifications in the thermochemical model actually do
reflect into changes in the flow field. However, the improvements to the base-
line flow obtained with the Lagrangian solver proved to yield sound results,
indicating that the velocity and density fields are not-so-tightly coupled with
the thermochemical description of the flow.

To sum up, the goal of the work is developing a solver that, at the price
of decoupling the velocity field, is able to refine a baseline solution along a
streamline, by including the chemistry of previously neglected species and/or
internal nonequilibrium.
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1.3 Atmospheric entry of meteoroids

Among the bodies entering the Earth’s atmosphere, meteoroids are probably
those experiencing the most extreme conditions. Modeling the air flow around
them is a non-trivial task using the standard tools used in the Aerospace field
and requires taking into account virtually all the phenomena reviewed in the
first part of this introduction. In this work, a first attempt of modeling this
problem is done with the developed Lagrangian solver.

To give an idea of the quantities involved, should be noted that the typical
entry velocity of meteoroids is higher than manned re-entry vehicles (around
11 km/s for Lunar missions), reaching up to 72 km/s for the Perseids meteor
shower and their ablation is very intense, usually completely destroying the
meteoroid before it can reach the ground. The quantity of meteoroids entering
the atmosphere is also massive, estimated to be around 50 tonnes a day, the size
of incoming bodies ranging from micrometers to some centimeters in diameter.

Many numerical and experimental effortd] are currently underway to char-
acterize the plasma flow that develops around meteoroids entering the atmo-
sphere, the main goal being correlating the parameters of the incoming body
(size, velocity, composition etc) to ground-based radar observationsﬂ The
high velocities, altogether with strong ablation, may lead to the creation of a
possibly very long ionized trail past the meteor, deeply altering the radio echo
received by ground stations.

A complete approach in simulating the ionized trail of the meteor at high
altitudes would be based on methods coupling Particle In Cell simulations and
Monte Carlo methods able to treat collisions, including some ablation modeling
of the surface. However those methods are very computationally expensive and
more efficient numerical schemes might be desirable. The Direct Simulation
Monte Carlo method, widely used in the Aerospace field for simulating rarefied
atmospheric entry flows, is a natural candidate for studying the problem. This
method suffers from some limitations, the most severe of which is the numerical
difficulty in implementing recombination of free electrons, that might be a
driving factor in the developing trail.

L At von Karman Institute for Fluid Dynamics, characterization of ablating chondrites
is being done in the Plasmatron facility.

2 One effort in radar detection of meteors is the BRAMS network, based in Belgium,
currently counting around 30 antennas spread all over the country. The BRAMS network
relies on forward-scattering techniques and detects around 1500 meteors echos per day.
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In this work, a DSMC simulation of a non-ablating meteor at high altitudes
is performed with the software SPARTAF| and the results are then refined with
the developed Lagrangian solver to artificially introduce recombination.

1.4 Structure of the thesis

This thesis develops as follows: first of all some physical models are reviewed
in chapter [2 introducing the Boltzmann equation, internal degrees of freedom
of atoms and molecules, the N-temperatures approximation and collisional
models used in Direct Simulation Monte Carlo codes.

In chapter 3] constitutive equations for nonequilibrium flows are introduced
and recast in Lagrangian form. The obtained ODE system constitutes the set
of equations that are solved by the developed Lagrangian solver.

Chapter 4| reviews numerical tools exploited in this work: a thermodynamic
library, a solver for relaxation past a 1D shockwave and a DSMC code.

The core of this thesis, the Lagrangian solver, is introduced in chapter
first of all reviewing its numerical implementation and then verifying it with
simple testcases.

After the implementation and verification step, the solver is applied to
practical cases (chapter@, starting with the relaxation past a 1D shock, where
more detailed chemistry is introduced, as well as thermal nonequilibrium using
the two-temperatures model. The solver is then applied to some simple DSMC
simulations of argon flows at various Knudsen numbers, and finally to the
problem of computing the recombination of free electrons in the ionized trail
of a meteoroid entering the Earth’s atmosphere at high altitude and velocity.

In the end, conclusions are drawn in chapter [, and some directions for
further improvements and applications are indicated.

3 http://sparta.sandia.gov
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CHAPTER 2

Physico-chemical models

2.1 Modeling rarefied flows

When dealing with rarefied flows, the fluid dynamics equations based on con-
tinuum approach progressively lose their validity and a more general model is
to be adopted. A practical way to characterize the degree of rarefaction of a
flow is provided by the Knudsen number, ratio between the mean free path of
the gas molecules and a characteristic dimension of the flow:

A

Flows with Knudsen numbers Kn < 0.01 can be thought as following the
continuum equations, while flows with Kn > 10 are usually called free molec-
ular flows and are characterized by a very low number of collisions among
particles. In the middle, the actual behavior of the fluid gradually deviates
from the classical gas dynamics equations based on the continuum hypothesis.

The Knudsen number as defined in equation is a little too coarse to
fully describe a flowfield, since it does not take into account that the fluid
might [ocally break the continuum hypothesis. A local version of the Knudsen
number may then be written, based on gradients of some properties () of the

flow: 1
Kn=— —Q
Q | dx
If dealing with rarefied flows, a new approach to the problem is needed.
Macroscopic constitutive laws can still be obtained, but starting from statisti-
cal mechanics and working in the framework of the phase space. An evolutive
equation can be obtained for the distribution function f(r,e,t), describing

A

(2.2)

5
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the probability density that a particle having a velocity between ¢ and ¢+ de
is located between r and r + dr at the time t. This equation is the Boltz-
mann equation and is valid at whatever Knudsen number for gases in or out
of equilibrium:

0 0 0
5 (f) + ¢ a—rj(nf) + Fj ac;

This equation is a nonlinear integro-differential equation, its integral and
nonlinear part being defined inside the term I' (nf), called collision integral.
By describing the evolution for the distribution function, the Boltzmann equa-
tion describes the state of a system of particles even out of equilibrium.

The macroscopic variables used in conservation equations (density, mo-
mentum and energy of the fluid particle) can be derived as moments of the
distribution function, and the conservation laws itself can be obtained by com-
puting moments of the Boltzmann equation.

(nf) =T (nf) (2.3)

2.2 Thermodynamics

Due to the high velocities and very steep gradients involved, hypersonic flows
are characterized by a variety of phenomena that do not show in supersonic
flows at Mach numbers lower than 5. The high energies involved are enough
to excite internal degrees of freedom such as vibrational and electronic, that
would be frozen or very poorly excited at standard temperatures. In many
cases, since the process of excitation requires a certain number of collisions, a
new dynamics emerge, whose times are comparable to the characteristic times
of the flow, thus generating in the domain regions of thermal nonequilibrium.
Translational equilibrium is the quickest to be reached, requiring only a few
molecular collisions, rotational is a little slower, while vibrational is much
slower and electronic degrees of freedom take even more time.

The energy of a generic molecule can be written as the sum of its trans-
lational, rotational, vibrational and electronic energies and the fact that they
can be in a state of nonequilibrium among each other induces us to introduce
different temperatures for each one of them. It should be noted that atoms do
not have rotational or vibrational energies and that free electrons can be seen
as a particular chemical species possessing only kinetic (translational) energy.
In general we could attribute different internal temperatures to different chem-
ical species, so that by denoting atoms with the set of indices A and molecules
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with M:
(T) + e (T7) + ey (TY) + e (Tf) + el

)

ieEM — e = €
€A = o = (D) +el(Ty) el
free electrons — e, = e (T.) +elo™

where the translational temperature 7" was supposed common among all
the heavy species (atoms and molecules), since translational equilibrium is ex-
tremely quickly reached. Note that although electrons have only translational
energy, their temperature is better supposed out of equilibrium since they are
very coupled to the most internal degrees of freedom such as electronic and vi-
brational. Such a model is very general, too much to be used in many practical
CFD computations, so that it is customary to merge together some internal
temperatures, giving rise to the so called N-temperatures models, that retain
the dependency on N temperatures only.

Two-temperatures model

Among the N-temperatures models, the “two-temperatures” is perhaps the
most famous, consisting in assuming that translational and rotational degrees
of freedom are in equilibrium among each other at temperature 7', whereas
vibrational, electronic and the kinetic energy of free electrons are in equilibrium
among each others at temperature 7,:

T=T, , T,=Ty=T (2.4)

Apart from its simplicity, this model gained wide usage since it is based
on the fact that rotational degrees of freedom reach equilibrium much more
easily than the vibrational ones.

Relaxation towards equilibrium

Molecular collisions provide a mean to equilibrate the internal degrees of free-
dom, so that equilibrium is eventually reached. Describing the energy transfer
among internal modes on a rigorous basis is a difficult task, usually addressed
through some modeling. A commonly used model is from Landau and Teller,
modeling the approach to equilibrium as a first order system. For vibrational

energy for example:
de,  e,(T) —e,(Ty)
~ 2.5
dt Ty (25)
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where 7 is a relaxation time, that may be expressed with the Millikan-
White approach with high-temperature correction by Park. A nice review of
the Landau-Teller model is given by Nikitin and Troe [10].

2.3 Physical models for DSMC

This sections briefly overviews models employed in the DSMC simulations
performed in this thesis.

Elastic collisions

Collisions in the DSMC model are performed among particles belonging to
the same cell, testing a certain number of pairs and actually performing the
collisions if a condition over the relative velocities and the cross sections is
met. Modeling the cross sections is the main issue and some models have been
developed in the years, the simplest being the Hard Sphere model (named
“HS”), that treating the particles as rigid spheres predicts a total cross section
o = md?,, with d;» being the average of the spheres diameters. The hypothesis
of constant cross section reveals to be quite heavy and leads to wrong results
on macroscopic transport properties. The cross section is actually found to
decrease with the relative velocity of the colliding pair and this results yields
to the formulation of a more accurate model, named Variable Hard Sphere
(VHS). This model includes the dependency on the relative velocity of the
colliding pair in the definition of the sphere diameter: d = dyef (¢ ref/cr)”.
The scattering law of this model is still isotropic, as for the simpler HS model.

The model used in this work is the Variable Soft Sphere (VSS), a modi-
fication of the VHS approximation that models the deflection angle with the

law: y = 2cos™! [(b/d)l/a]. For more details, the reader can refer to Bird [4].

From a practical point of view, the VSS model requires four parameters to
be specified for each species:

e reference diameter
e reference temperature
e viscosity coefficient w

e coefficient o
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the VHS model being the subcase with a = 1. The following input file for
the DSMC code SPARTA used in this work (http://sparta.sandia.gov)
resumes all the VSS parameters used in the simulations of this work:

# Syntax:

# - diameter [m] omega Tref alpha
# Argon:

Ar 3.595E-10 0.734 1000 1

# Airiil:

02 3.96E-10 0.77 273.15 1.4
N2 4.07E-10 0.74 273.15 1.6
0 3.0E-10 0.80 273.15 1.0
N 3.0E-10 0.80 273.15 1.0
NO 4.0E-10 0.80 273.15 1.0
02+ 3.96E-10 0.77 273.15 1.4
N2+  4.07E-10 0.74 273.15 1.6
0+ 3.0E-10 0.80 273.15 1.0
N+ 3.0E-10 0.80 273.15 1.0
NO+ 4.0E-10 0.80 273.15 1.0
e 7.0E-13 0.50 273.15 1.0

Inelastic collisions and chemistry

During collisions, part or all the energy of the colliding pairs might be trans-
ferred to internal energy as excitation of rotational, vibrational or electronic
modes. The most common method implemented in DSMC is the Larsen-
Borgnakke method (see Bird [4]), a phenomenological approach that matches
experimental relaxation times by tuning the energy transfer from translational
to rotational or vibrational modes. Taking into account exchanges of energy
among internal modes is not straightforward and is neglected in this approach,
as well as the excitation of electronic levels.

A more detailed description might be needed if accurate results are to be
obtained for high enthalpy flows such as those encountered in atmospheric
entry conditions. The so called “state-to-state” models provide such a level of
accuracy, see for example Bruno [I4]. Those models have been developed for
some mixtures and describe internal modes as pseudo-species and the energy
exchange is provided via pseudo-chemical reactions.

Another type of inelastic collisions are those that involve chemical reac-
tions, in which part of the colliding energy is used to destroy (or create) chem-

9
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ical bonds. There are mainly two models used in DSMC simulations: the TCE
(Total Collision Energy, see Bird [4]) and the Q-K (Quantum-Kinetic, see Bird
[21]) models. This work uses the TCE model, that computes collisions on the
basis of the kinetic energy associated to the relative velocity among the collid-
ing pair. In the hypothesis of a Maxwellian velocity distribution, cross-sections
are recast into rate coefficients in Arrhenius form.

The set of rates adopted in this work for air chemistry is reported in ap-

pendix [B]
Ambipolar assumption

DSMC methods are able to treat ionizing collisions among chemical species.
The resulting electrons can be treated just like any other chemical species,
moving in the domain, colliding and experiencing chemical reactions. How-
ever, the simulation of ionized flows poses a serious difficulty: since the mass
of electrons is way smaller than that of heavy species, the mean velocity is
much higher and as a result the timestep required to track electrons becomes
extremely small, too much for common simulations to be carried out.

Fortunately, weakly ionized plasmas have the tendency of being neutral
over a length that exceed the Debye length, since the electric field that gen-
erates from a net charge distribution in space tend to keep electrons and ions
close to each other. The assumption that ions and electrons stay relatively
close together is called “ambipolar assumption”, see Bellan [5].

The ambipolar assumption is implemented into DSMC codes by tying disso-
ciated electrons to their parent ions during the moving phase of the algorithm.
This does not affect the energy of free electrons (and their temperature), that
is stored and used to compute the effect of collisions.

10



CHAPTER 3

Governing equations for the
fluid model

In this chapter, governing equations for nonequilibrium chemically reacting
flows are introduced. After showing the general set of conservation equations
for nonequilibrium flows in PDE form (section , the set of equations used
by the Lagrangian solver developed in this thesis is introduced in section [3.2]
Finally, the inviscid set of equations to solve the relaxation past a 1D shock
(section is quickly introduced. This last set of equations is used to obtain a
reference solution over which verifying the Lagrangian solver implementation.

The derivation of the basic conservation equations will not be shown. The
reader can refer to classical textbooks on the subject, such as Anderson [1J,
Vincenti and Kruger [2] and Park [3]. The derivation of Lagrangian equations
is only sketched in this chapter, while more details can be found in appendix

(Al

3.1 Conservation equations

The description of a mixture in thermochemical nonequilibrium can be ob-
tained starting from the Maxwell transfer equations. Those equations are
valid both in the continuum and rarefied regimes, the main difficulty being
represented by the need of an accurate closure for the transport fluxes. The
well known set of Navier-Stokes equations is a particular case of the Maxwell
transfer equations, with a specific closure.

Set of Maxwell transfer equations

The Maxwell transfer equations may be expressed as the set of the density p,

11
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momentum pu and the total energy E conservation equations:

0
DAV (pu) =0 (3.1)
ag;tquv.(pu@)ujLPH):V- (3.2)
(9pE rad
o PV uP+pE) ==V -q+V (v )=-0Q (3.3)

where Q"% is the energy lost (or gained) as radiation and F is the total energy
per unit mass, sum of the internal and kinetic energy per unit mass of the flow:
E = e+ u?/2. The quantity P is the pressure, I the identity matrix, the
viscous shear stress tensor and g the heat flux vector.

Mass conservation for chemical species

To the set of Maxwell transfer equations, a balance equation for each chemical
species is added:
dpi
ot
where w; is the rate of production for the i-th chemical species and can be
expressed with the law of mass action. The term J; represents the mass flow
due to Fick’s diffusion, arising from the decomposition pu; = pu + J;.

Vibrational, rotational and electronic energy

The balance equations for the vibrational energy of the ¢-th chemical species
is easily obtained from conservation principles, reading;:

Opie; :
%+V~(mefu):—V-(e?Ji—i-q;J)-i-Qf, ieM (3.5)

where:
V - (e} ;) is the flux of vibrational energy due to mass flow

V - g} is the conductive flux of vibrational energy

(27 the rate of exchange of energy between vibrational and the other degrees
of freedom[l] This term requires modeling, see section

! Chemistry included, since the vibrational level of a species may change after the oc-
currence of a chemical reaction.

12
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M is the set of molecular species

For the rotational and electronic internal energies, the equation is formally
the same as for the vibrational case, with the only exception that the electronic
energy applies to any species, not only to molecular ones:

dpie; .
g;z FV - (peu) = -V (e T+ q)+ Q. ieM  (36)
apiefl el el el el -

with obvious meaning of the superscripts.

Free electrons translational energy

Obtaining an equation for the free electrons translational energy e is less
trivial than the other internal energies and relies on some strong hypothesis.
It should be noted that a charge distribution in space generates an electric
field and thus a force on the electrons, that will produce work. Also, charges
experience bremsstrahlung when accelerated, but this effect will be neglected.

Moreover, textbooks usually write an equation for the “electron-electronic”
energy, by merging the kinetic energy of free electrons and the electronic energy
of atoms and molecules, while for our goals the two contributions should be
kept separated. The equation will thus be here introduced in a slightly more
detailed manner.

Following Park [3], first of all the momentum equation is written by ne-
glecting viscosity:

Du

me
’Oeﬁ = —VPe - ; _ZNle (UZ - U@) - eNeE (38>

where u is the mixture velocity, U;—U., is the difference in diffusion velocity
of the i-th heavy species and free electrons, v; is the collision rate, e the electron
charge, N are number densities (number of particles per cubic meter) and E
is the electric field (self-generated plus externally applied). Here, the syntax
D/Dt represents the material derivative.

In the hypothesis of weakly ionized plasma, some simplifications are made.
First of all, the term p, is supposed small, so that the left-hand term vanishes,
then the difference in diffusion velocities is also supposed small since it would

13
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represent an electric current. A simple equation for the electric field is then
obtained:
eN.E = —-VP, (3.9)

The equation for free electrons kinetic energy is then written by apply-
ing the conservation to a control volume V'(¢) that is moving with the mean
velocity of free electrons w.:

d
— [ pee! dV:—f P'ﬁ-uedS—j{ qe-'ﬁdS—/eNeE-ue dV+/Qe dv
dt Jy ov oV v v

(3.10)

where the power of pressure forces has been taken into account since the

volume is moving. From here, the approximated result for the electric field

can be used, as well as simplifying hypothesis based on the weak ionization of

the plasma, finally leading to an equation for the free electrons translational
energy:

dpee; ¢
7+V' (peeeu) :—PeV-u—V-q6+Qe (3.11)

Equation of state

Finally, the equation of state for a multispecies mixture of perfect gases reads:

R R
P = Z inT + po—roTT. (3.12)

icH : M.
Because of the high temperatures involved in atmospheric entry flows and
the high degree of rarefaction, the hypothesis of perfect gas holds with great
precision.

3.2 Lagrangian approach

As seen in section [I.2] this work deals with the creation of a Lagrangian solver
that starting from a computed flow field may recompute the chemistry and the
temperatures in the framework of a multi-temperature fluid model. Since test
cases are carried out using the equilibrium assumption or the two-temperatures
model, equations here are shown only for those two cases, while the Lagrangian
equations for the more general N-temperatures model are left to appendix [A]
altogether with a more detailed derivation.

14
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The basic assumption underlying this work is that the velocity field u (7, t)
can be taken as given. From the mass conservation written for the whole
mixture (eq. , for a given velocity field it’s possible to compute the density
field directly, with no need of taking into consideration any more equation. For
this reason, also the density field is chosen to be “externally given”, in that
recomputing it with equation 3.1 would return the same result, altogether with
additional numerical errorE| This implies that from the set of conservation
equations shown in section [3.I the mass and momentum equations for the
whole mixture are not necessary anymore. The governing equations for the
Lagrangian solver are then:

i) one mass conservation equation for each chemical species
ii) the total energy conservation equation

iii) one energy equation for each internal energy

In the special cases of thermal equilibrium, equations in i) are not needed,
while in the case of two-temperatures model they are merged into one only
equation.

The first step is reformulating the required equations in a Lagrangian
framework following the fluid particle, by introducing the material derivative
and thus expressing the rate of variation of quantities along the streamline.
Additionally, for energy equations the chain rule is applied to obtain an equa-
tion for each internal temperature and for the translational one.

It should be noted that in a system of reference moving with the particle,
quantities are function only of the Lagrangian time 7, or function of the curvi-
linear abscissa s along the streamline. With a slight notational abusdﬂ we can
write for example:

Dyi (r,t) _ dyi (s (7))

= 1
Dt ds (3.13)

2 One should recall that even considering high Knudsen numbers, the mass conservation
equation retains the same shape. Even for rarefied flows then, the density field from a
well-converged DSMC simulation will satisfy equation

3 Formally, we should denote differently quantities in Eulerian and Lagrangian formula-
tion. In the example, we should have written y; (r,t) = §; (s (7)), the dash denoting that
we are handling a different mathematical function.
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and the same holds for any other quantity. The hypothesis that the velocity
field is given, thus, turns the conservation equations into a system of ODEs.

Mass conservation for chemical species
The mass fraction y; = p;/p is introduced into eq, leading to:

Dy; I,
D =@V (3.14)

Internal temperature 7,

In the framework of a two-temperatures model (see section [2.2)), an equation
for the internal temperature 7T, can be obtained by merging together the vi-
brational, electronic and free-electrons enthalpies, each function of T), only.

On conservational grounds, an equation for the enthalpy of internal degrees
of freedom A" can be written for each chemical species 4, reading:

Dh" V- (q" + hi"J;) + Q" — hi"a;
Dt PYi

(3.15)

Note that for molecular species, hi" is the sum of the vibrational and elec-
tronic internal enthalpies, while for free electrons it is represented by their
translational enthalpy.

The internal temperature T, is shown to follow the following relation (see

appendix |A)):
DT, Dhir .
Dt (Zy Dt )/(Zycp> (3.16)

1€S €S

that, by exploiting the previous equation in the hypothesis of null heat flux
and diffusion, leads to the internal temperature equation:

DT, Qmn — Y ics wihin in
o —( ) / Z%‘Cp,i (3.17)

1€S

Translational temperature T'

An equation for the translational temperature T of the mixture is obtained
starting from the total energy equation. First of all equation is written
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by introducing the per unit mass enthalpy H = E + P/p, then the mate-
rial derivative is introduced. The hypothesis of stationary flow is then made,
leading to:
DH
Dt
the term Q being the amount of energy entering or leaving the fluid particle
because of heat flux, viscous stresses or radiation[] The hypothesis of adiabatic
fluid particle may be useful in some situations and would lead to the simple
equation DH/Dt = 0, however such a case heavily fails in many practical
circumstances, such as near surfaces, in expansion regions and inside shock
regions.

Since the heat flux is a function of the temperature gradients, computing it
in the framework of a Lagrangian solver is not trivial at all. In this work, the
energy flux Q is taken “as given”, just as the velocity and density fields, from
the reference simulation. The hypothesis of taking the energy flux from outside
might at a first glance seem unrealistic, in that the temperature gradients
are by definition based on the temperature itself, that is an unknown of the
Lagrangian problem. However in section the hypothesis is shown to be a
great improvement with respect to considering the particle as adiabatic.

First of all the total enthalpy is computed from the reference simulation,
then its derivative is computed along the streamline, leading to an estimation

for O: D
Q - (D_t) » (319)

the subscript ref indicating that the value comes from the reference sim-
ulation. In order to obtain an equation for the translational temperature 7T,
the total enthalpy is expanded into its contributions. In the context of a
two-temperatures model:

= —V-q+V-(u-7)-Q = Q (3.18)

DH Dkt Dhi®  Du?/2
_ — 2
Dt Dt T i T oo < (3:20)

The enthalpies can then be written as a sum over the chemical species and
after some manipulations (see appendix , the equation for the translational

4 Radiation is not explicitly considered in this work, however the term Q is introduced
in such a way that it’s not necessary to specify the physical origin of the energy flux.
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temperature in the framework of a two-temperature model is obtained:

DT DU,22 hzwl in hwl
oot g () e oo

1€S P 1€S 1€S

Care should be taken when computing enthalpies (and specific heats) of
internal degrees of freedom, recalling that atoms have zero vibrational enthalpy
and that the translational enthalpy of free electrons is to be inserted in A"
and not in h.

A temperature equation for the case of equilibrium flows can be obtained
removing the term in round brackets from equation and substituting the
specific heats c;i for translational DOFs with the total specific heats ¢, ;:

% =9~ quft/Q - M] / [Z yicpz] (3.22)

€S €S

3.3 One-dimensional shock tube

In sections and the Lagrangian solver is applied to the case of thermo-
chemical relaxation past a 1-D shockwave. The reference solution is provided
by the software Shocking, developed at von Karman Institute, that in its most
general implementation is able to solve the set of inviscid conservation equa-
tions here shown:

d

P (piuv) = w; (3.23)
d 2
4 (P’ +p) =0 (3.24)
d 1,2
o lpu(h+3u%)] =0 (3.25)
d v N v v .
o (Puyief) = wie] £, ieM (3.26)
d el du : - el el
a[pu(yeee + Z yied)] = —Pea + Weee + Zwiei +Q (3.27)
ieH ieH

By following the derivation of Thivet [I7], the system can then be trans-
formed into a system of ODEs.
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CHAPTER 4

Numerical Tools

This chapter reviews the numerical tools used in this work, namely the Mu-
tation++ thermodynamic library for ionized gases, the Shocking code used
to compute thermochemical relaxation past 1D shockwaves and the SPARTA
Direct Simulation Monte Carlo code.

4.1 Mutation++: thermodynamic library

The Mutation++ library (Multicomponent Thermodynamic And Transport
properties for Ionized gases in C++) is a thermodynamic library developed at
von Karman Institute for Fluid Dynamics, with the goal of providing efficient
algorithms for obtaining thermodynamic and transport properties of nonequi-
librium mixtures. A beta version can be obtained at www.mutationpp.org.

The library is repeatedly called by the Lagrangian solver implemented in
this work, to obtain:

e Thermodynamic properties of mixture constituents such as enthalpies,
energies and specific heats

e Chemical production rates

e Terms of energy transfer among degrees of freedom

The thermodynamic model chosen in this work is that of the “Rigid Rotor -
Harmonic Oscillator”, whereas Mutation++ also implements two NASA poly-
nomial databases. Chemical rates are given to Mutation++ in Arrhenius form
and the energy transfer terms are based on a Landau-Teller approach, with
relaxation time given by the Millikan-White model including the Park correc-
tion.
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From a practical point of view, the usage of the library starts by specifying
the atomic composition of the mixture (number of nuclei of a certain element),
then the current state of the mixture can be set in terms of partial densities of
constituents and temperatures or energy. At this point, thermodynamic and
transport properties are readily extracted.

4.2 Shocking: relaxation past 1D shockwave

The Shocking code, developed at von Karman Institute for Fluid Dynamics,
is a 1D steady-state solver for Euler equations, aimed at computing the ther-
mochemical relaxation past a shockwave.

The code implements the set of equations shown in section [3.3] the ref-
erence thermodynamic library being Mutation++ and the numerical method
for integrating the ODEs system is provided by the package Odeint from the
Boost C++ libraries (v1.53 or higher).

Shocking takes as input the pressure, velocity and temperature of the free-
stream mixture. To these values, Rankine-Hugoniot jump relations are applied
to find the post-shock state (applying a Newton-Rhapson method if internal
degrees of freedom are supposed in equilibrium). The chemical composition
is supposed frozen during the shock, the free-stream composition is thus the
initial composition for the integration process. Constitutive equations are then
integrated starting from this composition and from the temperatures obtained
by the Rankine-Hugoniot relations, up to the specified distance from the shock.

The code is implemented in FORTRAN 95, but a newer version is cur-
rently being developed in C++4, following an object-oriented philosophy. It
must be noted that the Lagrangian solver implemented in this thesis has a
structure very similar to the C++ version of Shocking: both Shocking and
the implemented solver deal with an ODE system along a streamline, sharing
the numerical Odeint integrators and the Mutation++ thermodynamic library.
Also the integration step is quite similar, solving slightly different equations
but interrogating Mutation++ more or less in the same fashion. For this rea-
son, Shocking was the natural choice for the verification step of the Lagrangian
solver, shown in section The Shocking code is also used in section to
construct input flows to be subsequently refined by the Lagrangian solver to
provide a (hopefully) better solution.

Two versions of the Shocking solver were used, implementing the “Ther-
modynamic equilibrium” and the “Two-temperatures” models.
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4.3 SPARTA: Direct Simulation Monte Carlo

SPARTA, Stochastic PArallel Rarefied-gas Time-accurate Analyzer, is a Direct
Simulation Monte Carlo software developed at Sandia National Laboratories]]
written in C++. This code was used to provide reference flow fields, on which
the temperature or chemistry (or both) can be recomputed (and possibly re-
fined) by the implemented Lagrangian solver. In section a DSMC solution
is obtained for hypersonic argon flows at different Knudsen numbers, while in
section SPARTA is used to compute the flow field around a meteoroid
entering the atmosphere and the Lagrangian solver is then applied to refine
the electrons chemistry.

In the following, the DSMC algorithm is quickly overviewed and a couple of
testcases are performed with SPARTA, showing good agreement with literature
results.

4.3.1 The DSMC method

The DSMC method is a statistical method aimed at solving the Boltzmann
equation by simulating particles directly, see Bird [4]. Basically, the method
takes a set of simulator-particles and alternates a displacement step in which
the particles ballistically move in the domain to a collision step, in which some
neighboring particles are chosen to collide.

For a number of simulator-particles approaching the actual number of phys-
ical particles in the domain and the timestep being small enough, the solution
of the standard DSMC method?| was shown to approach the exact solution
of the Boltzmann equation, see Wagner [I3]. Of course, the number of sim-
ulated particles is usually extremely small with respect to the actual number
of physical particles, the ratio usually ranging around 10** — 107 and highly
depending on the type of considered flow, but this is enough to reach good
results for rarefied flows, while for flows in the continuum regime the method
quickly becomes too computationally demanding.

The computational domain is discretized in “cells” and collisions are per-
formed only among particles belonging to the same cell, the number of collision
being obtained from the kinetic theory. SPARTA implements elastic collisions

! See http://sparta.sandia.gov.
2 There are many variations of the DSMC method, mainly aimed at reducing computation
times and required resources.
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with the VSS model, the VHS being just a subcase. Inelastic collisions can
be implemented with a continuous Larsen-Borgnakke method with variable
relaxation times or with a quantized method (for diatomics molecules only).
Chemical reactions are also implemented, the user having the choice among
the TCE and the Q-K method. In this work are used the Larsen-Borgnakke
continuous method for inelastic collisions and the TCE method for chemical
reactions.

Ionizing reactions can be treated by SPARTA using the ambipolar assump-
tion. It should be noted however that ambipolar recombinations are not cur-
rently implemented. In section the developed Lagrangian solver is applied
to the computation of electrons recombination in the wake of a meteoroid,
the baseline simulation being performed with SPARTA. See section for an
overview of the TCE and VSS models, and for the ambipolar assumption.

There are some checks to be done to test whether the numerical solution
obtained with DSMC is physically acceptable:

1. The number of particles in the domain (or the energies) must have
reached a steady state. From this point on, cumulative averages can
be run to obtain a final solution

2. Each cell should contain at least 10 particles, 20 being a good compromise
between accuracy and computational overhead

3. The dimension of cells should be smaller than the mean free path every-
where in the domain

4. The time step should be smaller than the mean time between collisions

The grid generated by SPARTA is cartesian and cells can be refined at
user’s wish. An “on-the-fly” grid refinement is also provided by SPARTA,
adjusting the dimension of cells during runtime following criteria chosen by
the user such as local values for some parameter.

4.3.2 Testcases

In this section, two testcases are run with SPARTA and results are com-
pared with literature results obtained using different DSMC softwares, namely
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MONACH| and dsmcFoam[l] First of all, an argon flow at Mach number 10
over a cylinder is shown and a comparison is made with Lofthouse [I§], then
an air flow at Mach 24.85 over a cylinder is compared to results from Scan-
lon et al.[I9]. Not much emphasis is put in showing those simulations, the
goal being mainly testing SPARTA capabilities as a preparatory step for the
further simulations performed in sections and The criteria adopted
in accepting (or rejecting) a solution are those explained above, namely the
convergence in the number of particles, the cell-based Knudsen number, the
number of simulated particles per cell and the mean time between collisions.
Also a grid-independence study was performed, repeating the simulations with
increased number of both cells and simulated particles.

It should be noted that SPARTA, MONACO and dsmcFoam each imple-
ment slightly different models and algorithms, so that a small difference among
the results has to be accepted. One example is the chemical model: MONACO
uses the TCE model, while dsmcFoam is based on the Q-K approach (see Bird
[21]). Also, vibrations are treated in MONACO slightly differently than in
SPARTA. The reader should refer to the manuals of the softwares for more
information.

Argon flow

A simulation was performed for an argon flow over a cylinder and compared
with results obtained with MONACO by Lofthouse [18]. The flow free stream
conditions are resumed in the following table:

M 10

Kng 0.05

Noo 8.494 x 10" m=3
Uso 2624 m/s
Ty 200 K

Towall 500 K

deyt 0.304 m

Table 4.1: Free stream conditions for the argon testcase

The computational domain for this simulation is a rectangle, whose dimen-

3 MONACO is currently developed at University of Michigan by the group of prof. Boyd.
4 Freely available together with the OpenFOAM suite of solvers: http://www.openfoam.
com/\
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sions are shown in Table .3 along with the total number of simulated particles
and the number of cells, the cylinder being centered in the origin.
The VHS parameters for argon are shown in the following table:

war | Tref[K] | dref3.595E10[m] |
0.734 [ 1000 | 3.595E10 |1

Table 4.2: VHS parameters for Argon

T maz 2.5 m

Ymaz 1.2m

Npare | 2.6 x 10° particles
Neeus | 550 x 103 cells

Table 4.3: Computational domain for the argon testcase and number of
cells and particles

S Tlm I fI&:Dij:ll |

0 Temperature [K] 6.43e+03

Figure 4.1: Temperature field for argon flow at M=10
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Figure 4.2: Temperature profile along stagnation line. The surface is
located at /R =0

Figure [4.1| shows the temperature field in a subset of the computational
domain and Figure shows the temperature profile along the stagnation
line. Values for the temperature are found to be in good agreement with those
from Lofthouse [I8]. An even better agreement and more smooth results are
expected by increasing the averaging time.

Air flow

The last testcase is a cross-flow of chemically reacting air over a cylinder.
The air mixture is made of the 5 species: Ny, Oy, NO, N, O. The solution
is compared to results from Scanlon et al.[19], obtained with the softwares

MONACO and dsmcFoam.
The following table shows free stream conditions for the flow:

M 24.85

Kny 0.018

nair 1.4331 x 102 m—3
Us 6813 m/s

T 187 K

Twail 1000 K

dcyl 2 m

Table 4.4: Free stream conditions for the air testcase
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For this testcase, only the

forehead region has been analyzed. The com-

putational domain is a rectangle, whose limits are described in the following
table and the cylinder is centered in the origin.

Tmin
Tmaz
Ymin

ymam

N part
N, cells

Table 4.5: Domain

—1.5m
0 m
0m
2 m
180 x 108 particles
2.69 x 10 cells

, number of cells and particles, air

Computational domain for the air flow and number of cells and particles.

3
=
P

number density [m3]

10"

dsmcFoam, Scanlon et al. ¥
""" MONACO, Scanlon et al.
00000 SPARTA, this work

-15 -145 -14 -1

35 -13 -125 -12 -115 -11 -1.05 -1
X [m]

Figure 4.3: Number densities computed by SPARTA, MONACO and
dsmcFoam along the stagnation line. The surface is at x = —1 m

The comparison of SPARTA
that like SPARTA implements t

results is fairly good especially with MONACO,
he TCE model. Some deviations near the sur-

face are found but will not be further investigated, the number density of the
deviating species being very small with respect to the major species. In Figure

[4.4]is shown the translational te

mperature for molecular nitrogen Ny, the ma-

jor constituent. The set of chemical reactions used in the simulation is given

in appendix
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_1.24e+04

—le+d

Figure 4.4: Translational temperature for molecular nitrogen [K]
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CHAPTER D

Implementation and
verification

This chapter shows the implementation of a C++ program developed in this
work, able to solve the Lagrangian governing equations introduced in section
3.2l The implemented solver is named LARSEN, standing for LAgrangian
Reactor for StrEams in Nonequilibrium and the logo is shown in Figure [5.1]

5.1 The LARSEN solver

As seen in section [I.2] the goal is creating a solver able to integrate equations
along a streamline. Picking initial conditions from the beginning of the stream-
line, the chemistry and optionally internal temperatures are recomputed.

First of all a reference solution is needed and a streamline is to be extracted
from it. This streamline is given as an input to LARSEN, that imports the
velocity and density fields and also computes the enthalpy along the streamline.
LARSEN then starts the integration of the ODE set of equations of section [3.2]
taking as initial conditions the temperature(s) and mass fractions for chemical
species at the beginning of the streamline.

Results are returned by LARSEN in terms of species mass fractions and
temperatures and the user can compare them to initial values using standard
elaboration and plotting utilities such as Octave, Gnuplot etc.

To sum up, the user has to perform two operations:

1. Obtain a reference flow field, that might come from CFD, DSMC, or
even analytical methods
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2.

Extract values over a streamline, format them and start LARSEN

Then LARSEN performs the following operations:

1.

2.

reading the input file specifying the mixture and solver parameters
reading the file storing values along the streamline
saving values for density and velocity along the streamline

computing the total enthalpy along the streamline

. picking starting values for mass fractions and temperatures

integrating up to the end of the streamline

Figure 5.1: LARSEN logo

The LARSEN program was written in an object-oriented fashion, following
the same structure of the Shocking code (section . The two programs have
been merged into one only software, the long-term goal being developing a
versatile multi-purpose software able to treat different situations of interest in
hypersonic flows. It’s important to remark that LARSEN may be seen as a
variant of Shocking, that in spite of solving the momentum equation, imports
the velocity and density fields as a datum[T|thus gaining the ability of analyzing
more general problems than the 1D shockwave case treated by Shocking, at
the price of fixing the velocity and density fields. Also, just like Shocking, the
computation of thermodynamic properties and chemical and transfer rates is
obtained through calls to the Mutation++ library.

1" As well as the enthalpy, that gives the ability of estimating energy fluxes.
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Input file

The input file for Larsen has the aim of specifying the mixture type (such
as argon, airb, airll or any mixture implemented in Mutation++), the state
model (thermal equilibrium flow or two-temperatures model) and the thermo-
dynamic database to be used (Rigid Rotor - Harmonic Oscillator, NASA 7
polynomial or NASA 9).

A sample input file is provided here:

# ==========  Basic input file for LARSEN ============

Problem Type:
larsen

Name of the mixture:
airb

State Model:
ChemNonEq1T

Thermodynamic Database:
RRHO

Reference solution

The reference solution along the streamline is given as a plain text file where
values are separated by spaces. Each line stores the values at one point of the
streamline, in the following ordering:

1. curvilinear abscissa s along the streamline, in meters. Can have whichever
value at the beginning of the streamline (also negative) but must be
strictly increasing.

2. translational temperature 7" of the whole mixture, [K]
3. (only if two-temperatures model is selected) internal temperature 7T, [K]

4. pressure P of the mixture (dummy value, kept here only for future de-
velopments)

5. density p of the mixture, [kg/m?]
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6. module of velocity U of the mixture, [m/s]

7. mass fractions Y; of all the chemical species, [adim.]

It’s important to note that from the values along the streamline, the position
must be converted from (z,y, z) coordinates to the curvilinear abscissa s along

the streamline and the velocity w = (u,v,w) is to be converted to its module
U.

Numerical details

Once the reference solution have been imported, the solver starts integrating
from one point on the streamline to the next one.
A description of the steps performed by the solver during one integration

step is given in Figure 5.2

BEGIN Retrieve values from mixture
mix.getEnthalpiesMass(v_hi)
mix.getCpsMass(v_cpi)

Get Values Of U H mix.netProductionRates(v_omegai)
i 3 p’ ’ mix.energyTransferSource(v_omega_int_en)
at integration extremes
I |
Compute values at current Compute heat flux from total Enthalpy:
point by interpolating Q ext = u_now*(H ext[1] - H ext[0])/(x_ext[1l] - x ext[0])
Set mixture state Compute derivatives:
by imposing p; and T dy dt =
mix.setState(v rhoi, v T, 1) dTv_dt =
| dT dt =

Figure 5.2: Calculation of the system right hand side.

The values for the density and velocity at the current position are obtained
by linearly interpolating from the values at the extremes. By denoting with
the subscripts 1 and 2 the first and second points among which the integration
is being done, and by x the current position along the streamline:

p=p+o=m (@ —n)
U:Ul—l—M(x—xl)

T2—T1

(5.1)
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The derivative of the kinetic energy per unit mass D%i/ 2 is also needed
and is supposed constant during the integration step and computed via finite

difference using the extreming values:

DU2/2 2 71712
%t/ v & U UBSUL

2 To — I

(5.2)

where U is the velocity module. This implementation might not seem
obvious at a first glance, however this term can be rewritten as:

w-VU*=Un-VU? (5.3)

where m is the direction of the streamline. From this, it’s evident that the
gradient of U? is to be evaluated at two different values along the curvilinear
abscissa and to be multiplied by the velocity module U.

Energy fluxes

As explained in section energy fluxes changing the enthalpy of the fluid
particle are obtained from the reference simulation and plugged directly into
LARSEN. This can easily be done by computing the total enthalpy H of
the reference simulation along the streamline and by noting that this value
can change only if diffusion effects are present. Those effects are collectively
evaluated as the material derivative of H along the streamline, approximated
as constant for each pair of integration points 1 and 2:

Hy,— H
Q=2 "1 (5.4)
T2 — I
This approach is advantageous because it does not require any modeling
of the dissipative effects such as the heat flux and the shear stresses, that are

directly provided through the enthalpy field.

Numerical integrator

The integration is done with the package Odeint, part of the well-known C++
Boost libraries. Odeint provides several different integration schemes, called
steppers, such as the Runge-Kutta method with various kinds of error estima-
tors. For this work, a stiff solver is needed since the chemical rates typically
have extremely different values from one reaction to another and the chosen
algorithm for this work is the “rosenbrockj” method.
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5.2 Verification

In this section, some verifications on LARSEN are performed on the testcase
of thermochemical relaxation past a shockwave, with the main goal of testing
the software implementation.

As seen, even if the aims are different, the LARSEN and Shocking codes
share the same structure, extract values from the same thermodynamic library
in the same way (Figure and integrate their respective system of ODEs
in a similar fashion. For this reason, the implementation of LARSEN will be
here verified against Shocking itself.

Once a Shocking solution is computed, the velocity and density fields as
a function of the position past the shock are assembled and provided to
LARSEN, altogether with initial conditions of temperature and mass fractions
of chemical species. LARSEN re-computes the temperature(s) and species
mass fractions and those results are compared to the previously found Shocking
result. Since the nonequilibrium model is the same for Shocking and LARSEN,
the solution is (as one might expect) found to be in complete agreement with
the reference flow.

In the following table are resumed the testcases shown in this section. By
“airb” we refer to a mixture of non-ionized air species: Ny, Oy, NO, N, O,

while “airll” also includes the ionized air species and free electrons, namely:
N*, 0%, NO*, NS, OF , e.

Thermal equilibrium - T Thermal nonequilibrium - T, Tv
Shocking airh vs Larsen airb Shocking airb vs Larsen airb
Shocking airll vs Larsen airll -

Unless otherwise specified, the reaction mechanism for air is that of Park,
2001 [11]. The free-stream conditions are the same for the three testcases and
are shown in the following table, the difference among the testcases being the
number of considered chemical species and the number of internal tempera-
tures. The chosen free-stream conditions are arbitrary and were inspired from
the atmospheric entry of the Fire-IT capsule (see for example [12]).

P 5.2 Pa As a result of this verification step, we can state that
T 210 K LARSFEN meets the expectations of reproducing Shock-
U | 11310 m/s ing (correct) results, up to numerical precision.
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Shocking air5 vs Larsen air5 - 1T

The results shown here refer to a mixture of air5 in thermal equilibrium and
chemical nonequilibrium. Figure [5.3| shows the temperature plotted against

the distance from the shock (located at x = 0), and Figure |5.4{ shows the mass
fractions for the 5 simulated chemical species.
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Figure 5.3: Temperature relaxation past the shock.
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Figure 5.4: Mass fractions past the shock.
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Shocking airll vs Larsen airll - 1T

This testcase introduces more chemical species with respect to the previous
one, now allowing the ionization of atoms and molecules. Again, the compu-
tation is performed in the hypothesis of thermal equilibrium.
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Figure 5.5: Temperature relaxation past the shock.
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Figure 5.6: Mass fractions past the shock.
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Shocking air5 vs Larsen air5 - T, Tv

This last testcase is performed on only 5 chemical species, but the hypothesis
of thermal equilibrium is removed in favor of a two-temperatures model. The
translational temperature jumps across the shock, while the vibrational one is
supposed frozen in the pre-shock equilibrium state of 200 K.
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Figure 5.7: Temperature relaxation past the shock.
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Figure 5.8: Mass fractions past the shock.
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Results

The implementation for the Lagrangian solver LARSEN was shown and the
solver was verified on some testcases using the software Shocking as a reference
solution. In this chapter, LARSEN is applied to some flows to improve the
chemistry or recompute the temperatures by enabling thermal nonequilibrium.
Section deals with the thermochemical relaxation past a 1-dimensional
shock, while in section LARSEN is applied to a rarefied 2D axisymmetrical
flowfield computed with the Direct Simulation Monte Carlo software SPARTA.
Finally, in section LARSEN is applied to the problem of computing the
recombination of electrons in the trail of a meteoroid entering the atmosphere
at high velocities and altitudes.

6.1 1D shockwave

If we were to compare two computations of strong shockwaves, obtained with
different chemical models, we would find results that are very different in
terms of velocity and density fields. In Figures and for example are
compared the velocity and density fields obtained in case the chemistry model
is composed of 5 species (aird) or 11 species (airl1), for a shockwave moving
at 11310 m/s in still air at rest pressure P = 5.2 Pa and 7' = 210 K. The
basic hypothesis underlying this thesis work is that a good solution in terms of
chemistry may be obtained even with roughly estimated (but consistent) ve-
locity and density fields. This might seem unrealistic in the light of the shown
pictures, however the velocity and density fields show a somehow complemen-
tary behavior and the hypothesis might be supported by the results. Verifying
this hypothesis is the prerequisite for the Lagrangian solver developed in this
work to be of some use, and is thus the aim of this paragraph.

37



CHAPTER 6. RESULTS

1000 AT s I S A N

(2] ’\

E 800 |- |

. 600 - u

=

O 400 |- .

o |\ e aird

g 200~ e air1l
| | | | | | |

0
0  0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004
distance from shock [m]

Figure 6.1: Velocity computed for a shockwave at free stream con-
ditions: v = 11310 m/s, P = 5.2 Pa, T'= 210 K
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Figure 6.2: Density computed for a shockwave at free stream con-
ditions: v = 11310 m/s, P = 5.2 Pa, T'= 210 K

As in the previous section, the testcase is the relaxation past a shock-
wave and the reference software for both input files and reference solutions is
Shocking. The route for running the testcases of this section is as follow:

1. Compute a simple flowfield with Shocking (few chemical species or one
only temperature for example)

2. Refine the simple flowfield with LARSEN by passing it the density, ve-
locity and initial conditions previously computed

3. Compute a complete solution with Shocking and compare it with the
LARSFEN-refined solution

The following testcases are here discussed:
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e Improving chemistry:

— from an N5-O, mixture to airb, both in thermal equilibrium

— from air5 to airll, both in thermal equilibrium
e Introducing thermal nonequilibrium:

— from air5 in thermal equilibrium to air5 with two temperatures
model

N3-0O5 mixture to airb, 1T

In this testcase the post-shock conditions for a non-reacting mixture of N,
and Oy (also referred to as “air2”) are obtained using Shocking. A file storing
the reference solution is compiled and LARSEN is run on it, introducing the
chemical species of air5. A new complete simulation of air5, 1T is also per-
formed with Shocking and results are compared to the LARSEN-refined ones.
All the simulations are performed in the hypothesis of thermal equilibrium.
The following table resumes free stream conditions (pre-shock state):

Py | 5.2 Pa
T, [210K
Us | 7000 m/s

In Figure is shown the temperature profile refined by LARSEN (red)
and the correct one computed by Shocking (black), while Figure [6.4] shows the
mass fractions of chemical species. We can see that the introduction of the
chemistry in the Ny-Oy mixture have a strong effect on temperature, that de-
creases due to endothermic dissociation reactions, tending to a plateau which
correspond to chemical equilibrium. Molecular oxygen quickly reaches a fully
dissociated state, whereas molecular nitrogen does only partially. The forma-

tion of NO due to Zel’dovich reactions peaks at a distance of 0.8 mm from the
shock.
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Figure 6.3: Temperature profile computed by LARSEN and correct
solution by Shocking.
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Figure 6.4: Mass fraction for chemical species computed by LARSEN
and correct solution by Shocking.

In Figure the mass fractions are shown in logarithmic scale in the
vicinity of the shock.
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Figure 6.5: Mass fraction for chemical species computed by LARSEN
and correct solution by Shocking. Solution in logarithmic scale, close to
the shock

The refined solution shows big improvements in both the computed tem-
perature and in the chemical species, the values being very similar to the
correct results. The discrepancies in the mass fractions and temperature at
equilibrium should be interpreted by recalling that both the velocity and den-
sities used by LARSEN are those of non-reacting N, - Oy mixture, possibly
quite different than the natural results for air5E|

Air5 to airll, 1T

This testcase is very similar to the previous one. LARSEN refines an airb
solution by introducing ionization reactions. This time the shock is chosen to
be stronger, the conditions being chosen to be similar to those encountered
in the trajectory of the Firell probe during atmospheric entry around 80km
of altitude, see for example [I12]. The following table resumes free stream
conditions (pre-shock state):

1 Although the temperature is predicted to be a little higher, the dissociation is pre-
dicted by LARSEN to be lower. This might seem incorrect, however should be noted that
dissociation also depends on densities.
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P, |52Pa
T | 210 K
Us | 11310 m/s

In Figure is shown the temperature profile refined by LARSEN (red)
and the correct one computed by Shocking (black), while Figure shows the
mass fractions of chemical species.
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Figure 6.6: Temperature profile computed by LARSEN and correct
solution by Shocking.

In this case, the ionized species predicted by LARSEN are in good agree-
ment with the Shocking original result, while the prediction for neutral species
shows big differences at about 3 mm after the shock. This difference eventually
vanishes and at about 2 cm after the shock the results provided by LARSEN
are very close to the correct ones computed by Shocking. In Figure [6.8] a plot
of the species in logarithmic scale at a closer distance to the shock is shown.

From the mass fraction plots we can see that a considerable amount of

N is ionized. The first electrons are provided by the associative ionization
reactions:

N+O=NO" +e
N+N=Nj +e

and as their concentration increases, ionization by electrons impact domi-
nates, in particular for nitrogen atoms.
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Figure 6.7: Mass fraction for chemical species

It should be noted that the ion N7 is a “newcomer” in the problem, since it
is not present in the starting air5 mixture. Since the ionization process requires
much energy, it is reasonable to think that in the region where the ionization
becomes appreciable, the density and velocity fields might experience possibly
strong deviations from the previous non-ionizing air5 simulations. An unex-
pected deviation of the density and/or velocity field in this region could justify
the error experienced by LARSEN starting from 2 mm up to 3 cm from the
shock P

It is important to recall that this testcase is at higher shock velocity
(11310 m/s) than the previous one (7000 m/s).

2 This hypothesis should be verified by plotting the density and velocity fields for the
aird and airll simulations.
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Figure 6.8: Mass fraction for chemical species near the shock

Airll to air5, 1T

The reverse of the previous testcase is here performed for sake of curiosity: an
input file computed for an airll mixture is processed by LARSEN, that forces
the mixture to be composed only by 5 chemical species. Of course, this case
is not of practical interest, since one usually would like to refine a solution
rather than making it more rough, however this testcase let some symmetry
emerge in the behavior of the Lagrangian method. By comparing Figures [6.9]
6.10] and with those in the previous testcase, we can see that the trend
for the temperature is reversed: the temperature predicted by LARSEN now
gets below the correct value and then slightly rises above it where equilibrium
is reached. Also the error in the mass fractions prediction is inverted and has
a similar extent to that from the “airb-to-11” testcase.
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Figure 6.9: Temperature profile computed by LARSEN and correct
solution by Shocking.
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Figure 6.10: Mass fraction for chemical species very close to the shock,
as computed by LARSEN, compared with correct solution by Shocking
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Figure 6.11: Mass fraction for chemical species, as computed by
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Air5 1T to airb 2T

In this testcase, the LARSEN solver is used to introduce thermal nonequilib-
rium into a mixture, preserving the chemical model. The simulation to be
refined is an airb mixture in thermal equilibrium, chemically relaxing after a
shockwave whose free-stream conditions are:

Py | 5.2 Pa
To | 210 K
Us | 7000 m/s

As usual, the velocity and density fields are taken from the starting solution
and the initial value for the species mass fraction is that of the free-stream
state. The initial condition for the vibrational temperature is the equilibrium
free-stream value of 210 K, while the initial translational temperature is found
using Rankine-Hugoniot conditions for a gas of constant specific heats ]|
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Figure 6.12: Translational and vibrational temperatures as refined by
LARSEN, vs starting and correct solutions

3 The physical meaning of this condition is the assumption that translational and rota-
tional degrees of freedom are very quick to be excited, so that they almost jump across the
shockwave. Vibrational and electronic degrees of freedom on the other hand are supposed
slower and their excitation is negligible across the (thin) shock layer.
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We can see that introducing thermal nonequilibrium brings appreciable
improvements in the mass fractions and that the predicted temperatures are
qualitatively correct. In both the LARSEN-refined solution and the correct
solution by Shocking we can see that the maximum of vibrational temperature
is located where the vibrational and translational temperatures are equal, as
expected from the adopted model for chemistry-vibrational energy coupling.

It should be noted that LARSEN is able to correctly predict the peak
value for NO, that is underestimated by 3 times in the thermal equilibrium
simulation 4

In this testcase, the final values of velocity and density are the correct ones
since the chemical model is the same for all the simulations and when the
mixture reaches thermal equilibrium all the thermodynamic parameters will
be the same. The improving capability of LARSEN for this testcase is thus to
be investigated just in the non-equilibrium region.
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0 0.005 0.0 0.015 0.02
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Figure 6.13: Mass fraction for the species No, Oy and NO.

4 This might suggest that LARSEN may be of some use to obtain a first rough correc-
tion to CFD computations performed in the equilibrium hypothesis. In fact, the cost of
CFD simulations grows quickly if many temperatures are to be taken into account, since
introducing one equation would heavily increase the dimension of the system to be solved.
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Figure 6.15: Mass fraction of atomic oxygen.

Final remarks

The fact that temperature and mass fractions approach quite well the cor-
rect results gives credit to the assumption that velocity and density can be
decoupled and taken as given from a previous simulation.

In order to accept the difference in the equilibrium values between the
LARSEN refined result and the correct ones from Shocking, one should recall
that the velocity and density fields given to LARSEN are different from the
exact values since are based on the simplified initial model.

From the testcases it is evident that except for the equilibrium values -
that are predicted fairly accurately - the decoupling of density-and-velocity
and the chemistry yields some substantial error in the nonequilibrium region.
However, the Lagrangian solver is able for each testcase to significantly refine
the initial guess and provide a result which is closer to the correct values.
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6.2 2D argon flow from DSMC

This section is aimed at assessing LARSEN’s capabilities of elaborating a
multi-dimensional DSMC flowfield. An argon flow over a cylinder at three dif-
ferent Knudsen numbers is computed with SPARTA and fed into the LARSEN
solver. First of all LARSEN is applied to the stagnation line for all the three
Knudsen numbers and the temperature profiles are computed, then for the
case of Kn = 0.05 the computation is repeated on a whole streamline. A pure
argon flow was chosen in order to have the simplest possible DSMC result,
where no thermal nonequilibrium is present.E]

The LARSEN computations are performed both in the hypothesis of “adi-
abatic fluid particle” and by including the energy fluxes as explained in section
b.1} As could be expected, the adiabatic hypothesis shows to be totally inad-
equate for the testcase considered, not only in the shock region and near the
wall, but also in the wake.

DSMC simulations

Three DSMC simulations were performed with SPARTA on the forehead re-
gion of the cylinder at Knudsen numbers of 0.01, 0.05 and 0.25, based on the
cylinder diameter. Those three simulations will be used for running LARSEN
on the stagnation line. The following tables resume input values for the sim-
ulations.

M, 10

Uw | 2624 m/s | Kn | noc[part/m?®] | pc[kg/m’]

T T 500 R testcase 1| 0.01 | 4.247 x 10D | 2.817 x 107

T F00 K testcase 2 | 0.05 | 8.494 x 1019 | 5.635 x 10~

d’”“” 0150 o testcase 3| 0.25 | 1.699 x 10 | 1.127 x 10~¢
cyl .

The initial grids used for the simulations are provided in the following table,
where N, and N, represent the number of cells in the x and y directions. The
software was set to locally refine the grid in order to ensure that nowhere in the
domain the local Knudsen number’| gets below unity. However, it is customary

® The only internal degree of freedom for Argon, namely electronic excitation, was ne-
glected in this simulations.

6 The local Knudsen number is defined as the ratio between the mean free path and the
cell dimension: Knjpeqr = A/ Az
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to tolerate a small deviation from this general rule very close to the stagnation
point, in case the condition would require a too heavy refinement of the grid.
A schematic view of the domain is provided in Figure [6.16}

| No | Ny | Lo[m] | Ly[m]
testcase 1 - Kn 0.01 | 544 | 544 | 0.381 | 0.381
testcase 2- Kn 0.05 | 222 | 222 | 0.457 | 0.457
testcase 8- Kn 0.25 | 666 | 400 1.0 0.7

Table 6.1: Grids used for the three testcases

Note that for the testcase number 3, at Kn = 0.25, the domain is quite
large with respect to the other testcases. This dimension was found to be the
smallest to properly simulate the (very) smeared shock.

<
<

Figure 6.16: Computational domain for the testcases.

The parameters for the VHS model are shown in Table

WAr

Tref [K] ‘ dref [m] ‘ a
0.734 1

1000 | 3.595E10 |

Table 6.2: VHS parameters for Argon

Results were verified to be in agreement with literature values provided

by Lofthouse [I§]. In Figures [6.17] and are shown the translational

temperature fields for the three testcases. As expected, the shock becomes
increasingly spread-out as the Knudsen number increases.
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From the simulations we can see two regions where (as expected) the tem-
perature gradients are big: the shock region and the region near the (colder)
surface. In those regions the LARSEN solver will predict very bad results if
the assumption of adiabatic particle is made.

Temperature [K]

Temperature [K]
_6.59e+03
~6000

E4000
2000

-0

Figure 6.17: Translational Figure 6.18: Translational
temperature for Kn 0.01 temperature for Kn 0.05

Temperature [K]
-5.44e+03

4000

0

Figure 6.19: Translational temperature for Kn 0.25
Table [6.3] resumes the final number of cells after the automatic Knudsen-

based refinements, as well as the number of simulated particles in the domain
and the chosen timestep for the simulations.
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N, simulated N, cells At [3]
Kn=001 — 263M | 330000 | 2.0E-7
Kn=005 — 167M | 51000 | 1.0E-6
Kn=025 — 225K 7000 | 5.2E-6

Table 6.3: Number of simulated particles, number of cells and timestep
for the forehead simulations

Also, a simulation was performed on an extended domain for the testcase
at Kn = 0.05. This simulation will be used for running LARSEN on a whole
streamline. Flow parameters for the simulation are the same as for the previous
smaller argon simulation, while the initial grid is shown in Table |6.4] and the
domain is shown in Figure[6.20] Just as in the previous simulations, the initial
grid was automatically adapted in order to keep the local Knudsen number
above unity everywhere in the domain.

No | N, | Lom] | L,[m]
1200 | 530 | 2.743 | 1.219

Table 6.4: Initial grid for the extended argon case

1219mm

457mm 2286mm

Figure 6.20: Domain and temperature profile for the extended
testcase. Kn = 0.05
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Stagnation line

From the three shown simulations at three Knudsen numbers, values along the
stagnation line are extracted and passed as a “starting solution” to LARSEN.
Since the mixture is composed only by argon and electronic excitation is ne-
glected, no internal degrees of freedom are present and the only operation
actually done by LARSEN is recomputing the temperature profile, starting
the integration from the free-stream conditions.

The computation is first of all performed in the hypothesis of “adiabatic
fluid particle”, where the total enthalpy is conserved. Results for the three
Knudsen numbers are shown in Figure [6.21] where the position x = —0.15 m
is coincident to the stagnation point. This adiabatic hypothesis shows to be
inadequate especially near the surface, that has a lower temperature with
respect to the post-shock region (namely, Tyyq; = 500 K).

It should be noted that for all the Knudsen numbers, the adiabatic so-
lution by LARSEN reaches the values given by the Rankine-Hugoniot jump
conditions as the particle approaches the wall and thus the velocity reaches
ZEro.
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Figure 6.21: Temperature profile for adiabatic fluid particle along
the stagnation line.

The LARSEN computation was then repeated by introducing diffusion ef-

o4



CHAPTER 6. RESULTS

fects, allowing the total enthalpy of the fluid particle to change along the
streamline. The effect of the heat flux and all the dissipative effects is esti-
mated from DSMC directly, by computing the variation of the total enthalpy
from one point on the streamline to the next one, as explained in section
.1l Results for this computation are plotted in Figure [6.22] and show to be
extremely close to the values computed by DSMC.

Although not formally exactﬂ the hypothesis of importing dissipative ef-
fects in LARSEN directly from the DSMC solution proves to be extremely
valuable for this testcase.
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Figure 6.22: Temperature profile along the stagnation line with
diffusion effects.

7 From a physical point of view, diffusion effects should be modeled through the gradients
of the velocity field and of the temperature, which is an unknown of the problem itself. The
inclusion of dissipative effects is here achieved from the enthalpy based on the temperature
field provided by the DSMC simulation. This means that the included diffusion effects are
completely decoupled from the LARSEN solution.
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Streamline

After testing LARSEN on the stagnation line, a generic streamline is here an-
alyzed. The computation is performed in the hypothesis of conserved enthalpy
and then repeated introducing diffusion effects.

In Figure [6.23] are shown some streamlines extracted from the flowfield
using the Open Source software ParaView, integrating the velocity field with
a Runge-Kutta 4-5 method. The streamlines here analyzed are the two in solid
line style.

2000 400

00 6000
[E | | I

0 Temperature [K] 6.43e+03

Figure 6.23: Streamlines for the argon flow at Kn = 0.05, super-

imposed to the temperature field. Continuous lines are processed
by LARSEN.

From the results in Figure it can be stated that the hypothesis of
adiabatic fluid particle heavily fails for streamlines near the body, giving rea-
sonable results only for farther streamlines, where gradients are much less
steep. On the other hand, taking into account the variation of total enthalpy
due to diffusive processes gives the expected result.

The success of LARSEN with rarefied and multidimensional DSMC simula-
tions, altogether with the capabilities of improving the chemistry or introduce
nonequilibrium in a given flow (section , give hope that the solver may im-
prove the results in the mixed case of multidimensional reacting flows, possibly
out of equilibrium.
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Figure 6.24: Results computed by LARSEN with and without
diffusion, vs SPARTA. Top: streamline closer to the body; Bottom:
streamline farther

6.3 Electrons recombination in a meteoroid trail

In this section, LARSEN is applied to the analysis of the ionized flowfield
around a meteoroid entering the Earth’s atmosphere at high altitude and ve-
locity.

As seen in the introductory chapter (section , the detection of incoming
meteoroids via radar signals requires an estimation for the shape of the ionized
meteoroid trail. Since the current implementation of SPARTA (and many
DSMC codes as well) does not support electrons recombination with their ions
through three-body reactionsf| LARSEN is asked to compute a more accurate
chemistry past the meteoroid, the long-term goal being determining the length
of the ionized region for radar detection purposes.

The current work focuses on a mon-ablating meteoroid, where the only
source for electrons are ionizing collisions among air species. It’s important to

8 At least not in the framework of the ambipolar assumption
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remark that the ablation process might have two important effects: increasing
the density of electrond’] and filling the trail.

The fluid is a mixture of 11 air species, namely Ny, Oy, NO, N, O, N*,
O™, NS, OF , NO™ and electrons, entering the domain with a molar fraction
of 0.79N5 — 0.210, [ the set of reactions being reported in appendix [B] while
VSS parameters for air constituents are given in section Once again, it
should be remarked that electrons are treated with the ambipolar assumption
and do not recombine.

The considered meteoroid is modeled as a sphere of 1 cm diameter, traveling
at 72 km/s at an altitude of approximately 80 km, the Knudsen number based
on the meteoroid diameter being approximately Kn = 0.1. The free-stream
conditions are shown in the following table:

T, | 221 K
Us | 72 km/s
Noo | 1.1889 x 10%![part/m3]
Twan | 2000 K
1S
S
8
R 5mm
75 mm | 275 mm "

Figure 6.25: Computational domain for the nonablating meteoroid sim-
ulation

9 Metals have a ionization energy that is almost half that of air species and are very
reactive. It’s reasonable to expect that ablated metallic species will drastically increase the
density of electrons with respect to non-ablating results.

10 Should be noted that at high altitudes, the atmosphere composition is altered by solar
radiation and the concentration of dissociated species in the free stream might be non-
negligible.

58



CHAPTER 6. RESULTS

Collisions with the surface are treated as fully diffusive. Figure shows
the computational domain used in the DSMC simulation. A starting cartesian
grid of 1540 x 436 cells was chosen, then refined near the surface to ensure
that the local Knudsen number does not get below unity. As a final result, the
domain is composed by 527000 cells, the number of particles after the initial
transitory is about 30 millione{l;r] and the chosen timestep is equal to 1071 s.
The simulation was run until the number of simulated particles had reached an
almost stationary value for each chemical species, that is after 90 000 timesteps.
Only then, the transitory of the simulation is supposed over and cumulative
sampling is started to get averages. The simulation is 2D axisimmetric.

Figure [6.26] shows the number density of electrons as computed with the
DSMC code. The peak value is found to be approximately 1.76 x 10?2 particles
per cubic meter and is located at the stagnation point.

1e+19
| I I L LLLLLLL

le+17 electrons number density [m3] ]1&+20

Figure 6.26: Number density of electrons for nonablating meteoroid

The electrons number density can be used to compute the plasma frequency
and is fundamental to assess the conductivity and reflectivity properties of the
plasma. As reviewed by Pellinen-Wannberg et al. in [16], electrons number
densities of 10!* m™ are already detectable with radars working in the range
of VHF, while number densities of 10 m~2 can be tracked by UHF. From the
DSMC simulation we can thus see that air alone is able to produce enough

11 The number of particles is chosen so that the number of particles in the free-stream
cells is around 20 for each cell. Some regions in the trail very close to the body end up
having few particles, around 8 - 10: this is a well-known difficulty in rarefied hypersonic
flows, where the region past the body is almost empty. The simulation of ablating flows
solves this issue and the trail results composed mainly by ablated species.
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plasma for the meteor trail to be detected by currently employed radars. In
Figure [6.27] can be seen a contour plot that shows more clearly the number
densities in the range 10'® — 10'® part/m? as computed by SPARTA.

le+16 2e+16 3e+16 le+17
0.1 . S5e+17 \ 1\ / /

0.08 E
0.06 |
0.04
0.02 ¢
0.0

e s

00 01 0.3

Figure 6.27: Electrons number densities from the DSMC simulation.
Distances in meters.

It should be noted that since electrons do not recombine in the current
DSMC simulation, the only reason for the number density diminishment is
mass diffusion. The idea is now to find the streamline carrying the (more or
less) maximum in electrons density and applying the LARSEN solver to that
line to compute recombination. The DSMC simulation could then be scaled
accordingly along the x axis, to also include free electrons recombination. In
order to find the line of maxima in the electrons number densities, some vertical
sections were considered and the maximum was found to be located at about
y = 10 mm. The corresponding streamline, shown in Figure [6.28], was then
picked and passed to LARSEN, starting at 20 mm past the meteor center.

4e+5 8e+5 1.2e+6

O ———

0 Translational Temperature [K] 1.58e+06

N =

Figure 6.28: Streamline holding the maximum number density for elec-
trons, superimposed on the translational temperature field for heavy
species.
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Figure shows the number density of electrons along this streamline.
As can be seen, data is quite scattered: this is due to the fact that electrons
are a minor species in the problem, differing from the most present species
by some orders of magnitude, a non-scattered solution would thus require an
even bigger number of simulated particles or much longer averaging times.

2.5e+18

2e+18

y [part/m3]

it

=t
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le+18

S5e+17

electrons number dens

L L L L L L
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

curvilinear abscissa along streamline [m]

Figure 6.29: Number density of free electrons along the streamline.

LARSEN T - Tv on the streamline, adiabatic assumption

The extracted streamline is now used as an input for LARSEN, run with the
two-temperatures nonequilibrium model: translational and vibrational tem-
peratures at the beginning of the streamline are taken as initial conditions, as
well as the mass fraction of chemical species. The density and velocity fields
along the streamline are taken as external datum.

Since the DSMC simulation returns a translational temperature T; and a
rotational 7, (see Figure [6.30), the first step is merging them into one only
temperature T, accordingly to the formulation of the two-temperatures model.
This can be done by averaging the temperatures with the mass fractions of
molecules (showing rotational energy) as follows:

_ 5 DoiesYi + 1D iem Vi
Zies yi + ZiEM Yi

where the subscript S refers to all species, while M refers to molecular species
and y; are the mass fractions.

T

(6.1)
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Figure 6.30: Translational, rotational and vibrational temperatures
along the streamline.

Just as done in the previous section, two computations can be performed:
one by conserving the total enthalpy of the fluid particle (adiabatic hypothesis)
and the other one by including diffusive effects. This time, results for the
adiabatic simulation are even more interesting, since they lead to the physically

non acceptable solution shown in Figure with the temperature reaching
0 K.
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»—~ SPARTA
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Temperature [K]
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1 1
0 0.05 0.1

Figure 6.31: Translational temperature T along the streamline.
LARSEN conserves the particle enthalpy.
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In order to understand this result, we should refer to Figure [6.32, showing
the enthalpy of the fluid particle along the streamline (from DSMC solution).

Total enthalpy per unit mass [J/kg]
2.56e+09

2.54e+09
2.52e+09
2.5e+09

2.48e+09

| | | | |
0.05 0.1 0.15 0.2 0.25 0.3 0.35

curvilinear abscissa along streamline [m]

2.46e+09 !
0

Figure 6.32: Total enthalpy along streamline from DSMC' simulation

This plot shows that the total enthalpy is not conserved but increases,
meaning that energy is being transferred to the particle due to diffusion effects.
It’s reasonable to think that this energy will partially produce an acceleration
of the flow and thus become kinetic energy. In the adiabatic hypothesis, how-
ever, all the energy flowing to the kinetic energy term u?/2 necessarily comes
from the internal enthalpy, since no external flux is contemplated:

2 2 2
H:h+%:const—>h1:ho+%—%

Since the enthalpy at the beginning of the streamline hg is known, as well
as the velocity at the beginning and at the end of the streamline ug and uq, the
final enthalpy can be computed and leads a (physically unacceptable) negative
value.

(6.2)

ho | 2.167 x 10% J/kg
Ug 67292 m/s
(0 70598 m/s
hy | —1.117 x 107 J /kg

Of course, LARSEN crashes when a negative temperature is reached, ex-
periencing some troubles in computing chemical rates and transfer terms for
example.

To sum up, the behavior of the LARSEN solver in this case is attributable
to the fact that we are feeding it with a velocity field that is too much incon-
sistent with the conserved enthalpy hypothesis.
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LARSEN T - Tv on the streamline with diffusion effects

The computation on the streamline is here repeated, this time including effects
of diffusion.

Figure|6.33|shows the translational and vibrational temperatures computed
by LARSEN, plotted against the previous results from SPARTA. A small de-
viation is seen in the translational temperature and can be attributed to an
increased translational-vibrational coupling computed by LARSEN. In fact,
the vibrational temperature is predicted by LARSEN to relax much faster
than what happens in the DSMC simulation, based on the Larsen-Borgnakke
model. Further efforts should be dedicated to make sure that the chosen pa-
rameters make the two descriptions consistent or at least acceptable. Also,
by plotting the mass fractions (Figure [6.34) we can see that LARSEN pre-
dicts higher dissociation and ionization rates, we might then expect a lower
temperature.

160000

140000 ——~x SPARTA-T
x----x SPARTA - T,
120000 —— LARSEN-T
'\ - LARSEN - T,
o 100000 |-
2
© 80000 |-
(O]
£
60000 |-
@

40000 —

20000 — —

-
Vel
#

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
curvilinear abscissa along streamline [m]

»* e >

0

Figure 6.33: Temperatures recomputed by LARSEN including diffusion
and DSMC results by SPARTA
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Figure 6.34: Mass fractions of neutral species and of electrons as com-
puted by LARSEN and SPARTA

The molar fraction of electrons along the streamline as computed by LARSEN
is shown in Figure It should be recalled that in the LARSEN solver,
mass diffusion is neglected and thus also the total electrical charge inside a
fluid particle is necessarily conserved. This implies that the only mean of
diminishing the number of electrons in the LARSEN computation is through
recombination, since diffusion is forbidden.

Once computed by LARSEN, the effect of recombination could be heuris-
tically applied to the DSMC simulation a posteriori, by properly scaling the
DSMC-computed electrons number density with the fraction of recombined
electrons. However, an analysis of the molar fraction of electrons (Figure
shows that after a first region where LARSEN predicts quite different
rates with respect to SPARTA, recombination starts (slightly) diminishing the
number of electrons only at around 0.2 m from the beginning of the streamline.
This result indicates that the extension of the ionized trail is for this testcase
(much) bigger than the analyzed domain, since the quantity of electrons is still
of the same order of magnitude as the starting point.

The best (and more obvious) solution to this problem would be extending
the computational domain for the DSMC computation, the only problem being

65



CHAPTER 6. RESULTS

that for long trails this way becomes too much demanding. Another possibility
would be performing an approximated analytical modeling of the wake in
terms of velocity and density, that will eventually reach free-stream values as
the distance from the meteoroid increases. Once a model for the flowfield is
obtained, LARSEN can be run again, providing an estimation for the trail
extension.

Free electrons molar fraction
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Figure 6.35: Molar fraction of free electrons, computed by LARSEN
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Conclusions

This chapter resumes the results obtained in this work and points out some
improvements to be apported to the developed Lagrangian solver, as well as
some future work directions.

7.1 Summary of results

In this work, a Lagrangian solver for nonequilibrium flows was developed with
the goal of providing a lightweight tool that could be used to refine a previous
numerical simulation by introducing more elaborated chemichal models and /or
thermal nonequilibrium.

The solver works in the hypothesis that the velocity field is not-so-tightly-
coupled with chemistry and takes it “as given” from a previous simulation,
performed with whatever numerical or analytical method. This hypothesis
was tested on 1D shockwaves, recomputing the thermochemical relaxation
by introducing a more realistic chemical model and/or by allowing thermal
nonequilibrium with the two-temperatures model. In the case of “chemistry
refinement” the solver have brought drastic improvements to the initial rough
solution, predicting equilibrium concentrations very close to the correct val-
ues, with some deviations in the nonequilibrium region. For the introduction
of internal nonequilibrium, the results are a little less accurate, however the
application of the Lagrangian solver halves the error with respect to the correct
values.

The solver was then applied to 2D simulations of argon flows with three
different degrees of rarefaction, the basic simulations being performed with
the DSMC method. Both on the stagnation line and on streamlines close to
the body, the solver is able to reproduce the starting temperature profile with
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high accuracy.

Finally, the solver is applied to a rarefied air flow over a non-ablating me-
teoroid, entering the atmosphere at velocity of 72 km/s. The long-term goal
of this computation is estimating the length of the ionized trail past the body
for radar observation purposes. The goal is pursued by introducing recombi-
nation of free electrons, neglected in the baseline DSMC simulation. For this
testcase the solver predicts that recombination is not enough to extinguish
the electrons before the end of the computational domain, indicating that the
ionized trail extends over several diameters (at least over 35 diameters) from
the meteoroid. However, some non negligible discrepancies are encountered in
the chemistry prediction and in the behavior of the vibrational temperature
and some more investigation should be done. The problem of estimating the
length of the ionized trail for this testcase is thus still open and would require
bigger DSMC simulations or some approximated modeling of the wake.

7.2 Future work and possible applications

Much work could be done to improve the results of this thesis and to extend the
current capabilities of the Lagrangian solver. This section suggests some future
developments to which, according to the author, priority should be attributed.
Also, some possible applications of the Lagrangian solver are reviewed.

Future work: Diffusion mass fluxes

Governing equations take into account diffusion fluxes of masgl| through the
term V - p;U;. This term can be estimated by postprocessing the baseline
simulation, computing gradients in the x and y directions.

Implementing diffusion fluxes might be particularly useful for flows with
high gradients of chemical species concentration. Also, this would allow the
Lagrangian solver to take into account the process of elemental demizing. Dif-
fusion mass fluxes will be necessary for example to address the study of an
ablating meteor using the Lagrangian solver: with diffusive mass fluxes, the
integration could start from free-stream conditions and as the region near the
surface -full of ablation products- is reached, the mass fluxes automatically
introduce the new species in the computation.

1 Should be noted that the diffusive flux of energy is already taken into account via the
term @Q in the governing equations.
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Future work: N-temperatures model

Equations for the N-temperatures model are shown in this work in the La-
grangian framework. Extending the two-temperatures model might be very
useful: for example, including rotational nonequilibrium in the Lagrangian
solver could be necessary for properly treating many rarefied flows. General-
izing the solver for an N-temperatures model is mainly a matter of obtaining
the energy transfer terms from the thermodynamic library, implementing them
from scratch where needed.

Care should be put in how the thermochemical library computes the chemi-
cal rates, where geometrical averages of the temperatures might be needed and
may lead to discrepancies with respect to literature results.

Future work: Radiation

Some simple models for radiation could be implemented in the solver, providing
a mechanism for energy loss and thus cooling-down of the particle.

Future work: Ablating meteoroid

The simulation performed to the meteoroid could be improved by adding sim-
ple evaporation models for the surface. A first approach could be treating a
purely iron meteoroid, computing the ablation with simple evaporation mod-
els. Given the surface temperature, it’s possible to obtain the vapor pressure
of evaporating iron, and thus the vapor density. This value can then be im-
plemented into a DSMC software as a surface blowing.

Including ablation might provide appreciable changes in the concentration
of electrons, since the ionization potential of metals is typically way lower than
that of air species.

Application: Chemistry of pseudo-species

For some mixtures, very detailed and accurate models have been obtained for
the energy exchange among internal energy modes. The approach, referred to
as “state-to-state”, treats rotational and vibrational levels as chemical species
(“pseudo-species”) and the probability that an interaction would result in a
change of state is recast in the form of chemical rates, see for example Bruno
[T4]. The number of pseudo-species is very high for some models, so much
that a direct approach to the problem with CFD or DSMC methods is almost
prohibited. Due to its inherently lightweigth structure, the Lagrangian solver
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might be a suitable tool for applying the detailed state-to-state description to
non-trivial geometries.

Implementing a state-to-state approach basically reduces to creating a mix-
ture and storing all the rates for reactions among pseudo-species.

Application: Plasma frequency and blackout problems

Due to the possibility of computing ionization and recombination, the La-
grangian solver might be applied to the estimation of the peak plasma fre-
quency for atmospheric entry problems. The plasma frequency, tied to the
square root of electrons number density, can be used to estimate the points
of communication blackout along the entry trajectory of space capsules. Re-
combination of free electrons can be introduced by the Lagrangian solver as
done for the meteoroid ionized trail. Moreover, the Lagrangian solver gives the
opportunity of having a solution not based on the TCE model, usual standard
for DSMC simulations.

Application: Recombination in the plume of plasma thrusters

The plume of plasma thrusters is studied for various purposes, such as the
interaction with parts of the spacecraft structure. The plume usually works
in extremely rarefied environment, the DSMC being a useful tool, to which
electrons recombination could be added with the Lagrangian solver.
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APPENDIX A

Equations for the
N-temperatures model

In this appendix the derivation of the equations implemented in the Lagrangian
solver is shown with a little more detail with enough generality to provide the
basis for an N-temperatures implementation.

First of all the mass conservation equation for the ¢-th chemical species
can be recast in Lagrangian form by introducing the species mass fraction

Yi = i/ p:

. Ipi . 0 .
Wi=Vodi = 2+ Ve (pu) = o (oy) £V - (pyiu) =

0y; 0
P |: az +’U,-Vy¢:| +yiM (Al)

where the second term at the right hand side is the mass conservation
for the mixture and is thus identically zero. The material derivative can be

introduced: 5 D
[ ] [ J
- . = A2
o TV T o (A-2)
and the mass equation for the i-th species becomes:
Dy; v — V- J;
i Y (A.3)
Dt p
In the further hypothesis of zero diffusion fluxes, we have:
Dy;  w;
= — A4
Dt (A.4)
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Now, the first step in developing the N-temperatures model is choosing
which degrees of freedom are in equilibrium among each others (7" = T, and
T, = T, = T, in the case of two temperatures model). All the steps are then
performed with the idea in mind of merging together the internal enthalpies
relative to DOF's that are in equilibrium.

By labeling with P a pool of degrees of freedom supposed in equilibrium
among each other (such as vibrations, electronic excitations and free electrons
translation in the case of 2T model), one can write an equation for the temper-
ature Tp. The first step in doing this is taking a chemical species and writing
a conservation equation for the fraction of its enthalpy belonging to the pool,
here called hl:

% (pih]) +V - (piuhl) = =V - (q] +h] J;) +Q (A.5)

In the case of T-T, model for example, we’d write:
hf = hY + het < for molecules
hf = h¢  « for atoms
hf = h, <« for free electrons

The Lh.s. of equation can be elaborated by introducing the species mass
fraction y;:

O (oh?) + V- (pu?) =

ot
0 0
p| g7 ) + e ¥ i) i | 0 2| (a0

where the mass conservation for the mixture elides the second term at
the r.h.s; by also introducing the mass conservation for the i-th species in
Lagrangian form, an equation for the enthalpy Al along the streamline is

obtained: » > > » >
Dh; -V - (q +h:J;) 4+ —hjw
L= (qz : ) (A.7)
Dt PYi
where the term QF accounts for the energy flowing from the i-th chemical
species mode belonging to the pool P to other modes. This equation will be

used in a few lines.
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The next step is writing the material derivative of the total enthalpy of the
pool hP:

D? D
- = — S
Dt thy i

i€S

P ¢ i P i
% - i h;
Zy £ hi Dy (;y dTp Z Y

€S

Writing the previous equation is not really useful, except for the fact that
it’s a nice way to see the next step, namely recalling that:

DAP dhP(Tp)\ DTp

i B - A.
S @yzﬂb o (A9
€S 1€S

and thus:
DTp B th P
(D) (Beem)

By now exploiting the equation for DhF /Dt, under the hypothesis of no
heat and diffusion fluxes for the pool energy:

€S €S P P

where Q7 accounts for the energy transferred to the energy pool from other
pools. The equation for the pool temperature Tp then reads:

P _ wih
D];)ZZ? _ <Q Z:pzes ) / (Z yic pl> <A12)

€S

After deriving an equation for each internal energy pool, the last step is de-
riving one for the energies in equilibrium with translation, whose temperature
is simply referred to as T'. Starting from the conservation of total enthalpy
DH/Dt = Q, the enthalpy H is split into its contributions, namely the kinetic
energy u?/2 plus all the energy (enthalpy) pools:

DH _ DI  ~Di* D)2
Dt Dt - Dt Dt

-0 (A.13)
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the pool that includes the translational enthalpy was kept separated and
labeled h'. In the case of two-temperatures model, the sum over the pool
reduces to the vibration - electronic - free-electrons pool.

Now, since A’ is function of the translational temperature T' (and of the
mixture composition), it is splitted into the contributions from each chemical
species and then the chain rule is applied to let emerge the material derivative

of T:

DD—]? = D% (tht> - Zhwl (Zy pz> — (A.14)

A

so, DT'/Dt can be inserted into the total enthalpy equation, leading to:

DT Du?/2 Dh? hi; .
(T g/ () o

The material derivatives for the enthalpies of the pools can now be ex-

plicited:
th_z<z Zh%) Z% ( phl)"‘Z( > Wi
ics i€s i€s (A,16)

by reinserting this term into the master equation, the enthalpies multi-
plying chemical rates join the translational enthalpy, giving the total internal
enthalpy h of the species, for the basic identity: h; = hf + > h}. By also
exploiting the equation for DA? /Dt in the hypothesis of null diffusion and heat
flux:

DT Du?/2 hiw; . hmonty
o9 o X, (Q P P )]/(Zy)
€S i€S €S
(A.17)

where the term Q' accounts for the energy flowing from the pool that
includes the translational enthalpy to the others and h"*"' refers to all the
pools except the one including the translational DOF.

An equation for the translational temperature for the case of thermal equi-
librium can be easily obtained starting from equation and considering
that the “translational pool” is the only one.
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APPENDIX B

Chemical reactions for DSMC
simulations

Table [B.1l shows the set of chemical reactions used in this work to simulate a
mixture of 11 air species in DSMC simulations. Reactions follow the Arrhenius
form:

k = ATVe Fa/ksT (B.1)

where kg is the Boltzmann constant, E, the activation energy and A and
b are respectively the Arrhenius prefactor and exponend.

In the table are shown the parameters A, b and E,, plus the number of
internal degrees of freedom N; (needed by the TCE model) and the overall
reaction energy E™“!(positive for exothermic). The TCE model is explained
by Bird [4]. Another useful reference is Goldsworthy and Macrossan [20)].
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Reaction N; E, A b Ereact
O2+N—-O+O0O+N 1.0 | 8.197e—19 1.660e — 8 —15 —8.197¢ — 19
02+ NO - O+0+ NO 1.0 | 8.197e—19 3.32le — 9 —1.5 —8.197¢ — 19
02+ N2—-0+0+N2 1.0 | 8.197e —19 3.321e — 9 —1.5 —8.197¢ — 19
024+02—50+0+02 1.0 | 8.197e—19 3.32le — 9 -15 —8.197¢ — 19
02+0—=-0+0+0 1.0 | 8.197e—19 1.660e — 8 —1.5 —8.197¢ — 19
N24+O—->N+N+O 1.0 | 1.561e —18 4.980e — 8 —1.6 —1.561e — 18
N2+ 02— N+ N+02 1.0 | 1.561e —18 1.162e — 8 -1.6 —1.561e — 18
N2+ NO —-N+N+NO | 1.0 | 1.56le—18 1.162e — 8 —1.6 —1.561le — 18
N2+ N2 — N+ N+ N2 1.0 | 1.561e — 18 1.162e — 8 —1.6 —1.561le — 18
N2+N-—->N+N+N 1.0 | 1.561e —18 4.980e — 8 —1.6 —1.561le — 18
NO+ N2 — N +0+ N2 1.0 | 1.043e —18 | 8.302e — 15 0.0 —1.043e — 18
NO+ 02— N +0 + 02 1.0 | 1.043e —18 | 8.302e —15 0.0 —1.043¢ — 18
NO+NO—-N+O+NO | 1.0 | 1.043e—18 | 8.302e — 15 0.0 —1.043e — 18
NO4+0O—-N+0+0 1.0 | 1.043¢ —18 1.862¢ — 13 0.0 —1.043¢ — 18
NO4+N-—-5>N+O+N 1.0 | 1.043e — 18 1.862e — 13 0.0 —1.043e — 18
NO+4+0O —O2+N 0.0 | 2.684e —19 1.389¢ — 17 0.0 —2.684e — 19
N24+0 —- NO+N 0.0 | 5.175e — 19 1.069¢ — 12 —1.0 —5.175¢ — 19
02+ N - NO+O 0.0 0.0 4.60le — 15 | —0.546 2.684¢ — 19
NO+N —- N2+0 0.0 0.0 4.059¢ — 12 | —1.359 5.175¢ — 19
O+ N — NOt +e 0.0 | 4.404e —19 | 8.766e — 18 0.0 —4.404e — 19
N+ N — N2t 4e 0.0 | 9.319¢e —19 | 3.387¢ — 17 0.0 —9.319¢ — 19
O+0— 02t +e 0.0 | 1.1128e — 18 | 1.8580e — 17 0.0 —1.1128¢ — 18
NOt 4+ N — O+ N2t 0.0 | 4.832¢—19 | 1.1956e — 16 0.0 —4.832¢ — 19
N2t +0 - N+ NOT 0.0 0.0 1.744e — 18 0.302 4.832¢ — 19
N2+ Nt — N+ N2+ 0.0 | 1.684e —19 | 1.6605e¢ — 18 0.5 —1.684e — 19
N2t + N - N2+ N+ 0.0 0.0 1.295¢ — 18 0.5 1.684e — 19
NOt 4+ N — N2+ 0Ot 0.0 | 1.767¢ —19 | 5.6458¢ — 17 1.08 —1.767¢ — 19
N2+ 0t - N+ NOt 0.0 0.0 3.9708¢ — 18 | —0.710 1.767¢ — 19
NOt4+0 - 02+ Nt 0.0 | 1.767e —19 | 1.6605e¢ — 18 0.5 —1.767¢ — 19
02+ Nt -0+ NOt 0.0 0.0 3.040e — 18 —0.29 1.767e — 19
NOT +0 — N +02*t 0.0 | 6.710e —19 | 1.1956e — 17 0.29 —6.710e — 19
02t + N - O+ NOt 0.0 0.0 8.918¢ — 13 | —0.969 6.710e — 19
NOT +02 - NO 4+ 02+ 0.0 | 4.50le —19 | 3.9853e¢ — 17 0.41 —4.501e — 19
02t + NO — 02+ NO* 0.0 0.0 3.990e — 17 0.41 4.501e — 19
02t + N 502+ N+ 0.0 | 3.949¢ —19 | 1.4447e — 16 0.14 —3.949¢ — 19
02t +0 - 02+ 0t 0.0 | 2.485e —19 | 6.6422¢ —18 | —0.09 —2.485¢ — 19
Ot +02 = 0+ 02t 0.0 0.0 4.993¢ — 18 | —0.004 2.485¢ — 19
02T + N2 = 02 + N2+t 0.0 | 5.619¢ —19 | 1.643% — 17 0.0 —5.619¢ — 19
N2t + 02 - N2 + 021 0.0 0.0 4.5899¢ — 18 | —0.037 5.619¢ — 19
Ot + N2 — O+ N2t 0.0 | 3.148¢ —19 | 1.511le —18 0.0 —1.148¢ — 19
N2t +0 — N2+ 0t 0.0 0.0 4.118¢ — 11 —2.2 1.148¢ — 19
Ot +NO - 02+ Nt 0.0 | 3.673e—19 | 2.3248¢ — 25 1.90 —3.673e — 19
Nt 4+02— NO+ 0Ot 0.0 0.0 2.443e — 26 2.102 3.673¢ — 19
O+e—O0t+e+e 0.0 | 2.188¢ — 18 6.4761E3 —3.78 —2.188¢ — 18
N+e—s Nt +ete 0.0 | 2.322¢—18 4.1513F4 —3.82 —2.322¢ — 18

Table B.1: Set of reactions for air mixture, used in DSMC simulations.
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