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Hi everybody! Qsci is a MATLAB script that compute the electrostatic
field generated by conductive bodies. You can place spheres, cones, wires,
planes, cylinders in the space, impose a voltage on them or let them float
and impose an electric charge value; Qsci computes and plots the electric
potential and electric field on planes, the charge density over the shells and
capacities between conductors. Qsci may export Electric field, Potential and
the geometry in POVray format.
Qsci is under LGPLv3 license.

Hope you enjoy!
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1 Introduction

Well.. the first time I’ve been studying electromagnetism, I found a little
weird that surface charge could eventually be non-uniformly distributed on a
conducting surface. Of course, after some time and a little more knowledge
it turned out to be a “why on Earth should it be otherwise??”, but still I
find fascinating to watch at charge distribution, induced by other bodies..
and seeing how merging a floating voltage conductor into an electrostatic
field can deflect the field lines to make its iso-potential dream true. Qsci
was essentially born to quench this need for plotting. Since it didn’t want
to be just a fashion tool, Qsci outputs the total charge and Voltage on every
conductor.

Qsci allows you to create some conductive shells or bodies via geometry-
creating functions. You can assign to the surfaces a value for the electric
potential or leave them floating and assign a total charge value, and Qsci
calculates:

• charge density on the surfaces (by default)

• intensity of electric potential (on request)

• electric potential (on request)

• capacities between objects

The electric field and potential are computed and plotted on three orthog-
onal planes. Also Qsci may export the fields and geometry to POVray .pov

format. Geometry creation, plotting and exporting requests are managed
through an input file called INPUT.m

Which geometries can I create?
At the moment, I’ve implemented spheres, planes, cones, cylinders, straight
wires and loops. The firsts are surfaces and Qsci will output a surface density
plot for them, while the latters are 1D elements and you will not see a linear
density plot. You can implement your own geometry, see the appropriate
chapter of this user manual.

I’d really love to implement a cow or a cactus-like surface, so if someone
would kindly implement that for me, I’d include him/her in the thanks to
section!
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What about the numerical magic?
I really love lumped parameters methods: they are so intuitive and quickly
implemented! Qsci disposes sources (electric charges) on the surfaces or lines
and calculates the potential field in some control points. A linear system is
solved and solution is served!

Measuring Units - PAY ATTENTION HERE!!!
Qsci works in IS units, but please be aware that to avoid working with values
of 1E-12, every value for the charge is actually q/ε0!!! That is, if you set a
charge Q̃ = 20 units, you are actually setting a physical charge value of
q = Q̃ε0 = 20ε0[C] !

Computed Capacities are typically huge: it’s because of the choice of not
dividing by ε0. To obtain real capacities, multiply the output by ε0.

What does Qsci mean?
Since it was conceived as a script to plot surface charge distribution in elec-
trostatics, “Qsci” is the contraction of Q, the universal symbol for charge
and gusci, Italian word for “shells”. “Qsci” and “gusci” sound almost the
same!! :)

Licensing
Qsci is a weekend project: I wouldn’t rely too much on Qsci results if I were
you! Qsci is Open Source and is under LGPL license v3.
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2 Input File

The input file specifies geometry, plotting properties and whether to compute
Capacities or not. This file is called INPUT.m.

2.1 Geometry Construction

Qsci initializes a class called sups (in Italian superfici = surfaces) and the
input file almost consists in filling it. Every type of elementary geometry is
defined by certain attributes:

• spheres are defined by radius, center position and number of elements
in which dividing it.

• planes are defined by the direction, the length and the number of ele-
ments

• and so on

Let’s say we want to add 2 objects, a sphere and a line: write in your
input file something like

% ============ MY CONDUCTORS ============

% ---------- Surface 1: sphere ----------

sups(1).type = ’sphere’;

sups(1).Rad = 0.6;

sups(1).xyz = [-1,2,1];

sups(1).nth = 20; % number of elements in theta direction

sups(1).nphi = 40; % number of elements in phi direction

sups(1).V = 5; % Volts

sups(1).Q = 0; % this is going to be ignored

% because we have set the voltage

% ---------- Object 2: wire ----------

sups(2).type = ’line’;

sups(2).xyzA = [2,-2,4]; % starting point

sups(2).xyzB = [2,-2,-3]; % ending point

sups(2).nL = 50; % number of elements spanwise
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sups(2).V = ’free’; %

sups(2).Q = 300; % Q = 3 means that the real

% phisical charge is

% q = Q*epsilon0 = 2.655 [nC]

Don’t skip places, that is don’t jump from sups(1) to sups(3) forgetting to
fill sups(2), or Qsci could get angry. You can find more about the geometry
creation in section 3 and reading the example INPUT files included in the
sources.

To every element you can assign a value for the electric potential (that
is a Voltage) or the total electric charge. Not setting a voltage results in a
freely floating conductor whose potential is determined by the field. If you
have set a voltage, any setting on the total conductor charge will be ignored.
If you have not set a voltage and you didn’t set a total charge either, the
conductor is supposed globally electrically neutral.

For example: to set a voltage of 21V to the 3rd object, we write:

sups(3).V = 21;

while setting the object number 3 with a floating voltage and with a total
charge of 3.4/ε0 reads:

sups(3).V = ’free’;

sups(3).Q = 3.4;

Again, please note that every charge shown and inputted to Qsci is in the
truth a value that have been divided by ε0. This is because I didn’t feel like
working with numbers in the order of 1E-12. Just mind this and you’ll get
straight.

2.2 Plotting Properties

Surface Charge
Surface charge is automatically computed and plotted in a single plot con-
taining all the created geometrical entities. Plotting together multiple sur-
faces results in plots that are not very clear in terms of surface charge: you
may desire a plot of some object on their own. This can be done by setting
somewhere in the INPUT file lines like:
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sups(4).plot_me_alone = 1;

this will result in the production of a surface density plot for the object
number 4. Note that surface density is implemented only for surface-like
objects: setting plot me alone = 1 for a line object results in a plot of a
completely black (and meaningless) line.

Electrostatic field and Electrostatic Potential
In order to plot the electrostatic field or the potential, you have to ask Qsci
to do so. Qsci will show the fields on three planes merged in the volume and
oriented as xy, yz and xz.

First of all, tell Qsci that you want him to compute Potential and/or
Electrostatic field, by writing the following in the INPUT file:

plotField.plotPotential = 1;

plotField.plotElectricField = 1;

plotField.plotPotential enables a contour plot of the Electric Po-
tential over planes. plotField.plotElectricField enables both a contour
plot for the intensity of the the Electric field and also three cool surface plots.
Not setting one of those variable is the same as setting them to zero.
Then you must specify how long and where you want plot planes to be. In
the INPUT file, set:

% Put the intersection of the 3 planes in [-4,2,-1]

plotField.xorig = -4;

plotField.yorig = 2;

plotField.zorig = -1;

% The x coordinate must go from the origin (x=-4) ahead for

% Lx = 10 meters.

% The y coordinate must go from the origin (y=2), backwards

% for Ly = -10 meters

% The z coordinate starting from -1 forward for 5 m

plotField.Lx = 10;

plotField.Ly = -10;
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plotField.Lz = -5;

% I want the plotting resolution to be:

% 100 points along x

% 105 points along y

% 130 points along x

plotField.nx = 100;

plotField.ny = 105;

plotField.nz = 130;

Note that the electric field computation and plot is less accurate
than electric potential near surfaces, for the electric field blows up
much faster than the potential does when approaching charges!!

2.3 Capacitance computation

Activating the computation of capacities requires only adding the following
line into the INPUT.m file:

capacityCalc.computeCapacities = 1;

Avoiding this is equivalent to setting the parameter value to zero.

2.4 Exporting in .pov format

Qsci allows you to export results and geometry for renderings with POVray,
the well known Open Source ray-tracing software. You can ask Qsci to export
the plotted Electric Field intensity or the Electric Potential, by adding to the
INPUT.m file one or both the following lines.

exportPOVray.exportPotential = 1;

exportPOVray.exportElectricField = 1;

Note that those lines will work only if the corresponding plotField vari-
ables have been set to one: you must first enable plots in order to export
them!

If you have installed POVray and the image viewer feh, the following
line in the INPUT.m file will automatically launch a POVray rendering and
visualize the image with feh. Press Esc to quit.
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exportPOVray.showMeResults = 1;

PS: I’m not sure whether feh is available under Windows or not.
In the Examples section, you can see the potential and electric field generated
by a sphere and rendered with the exported POVray file.

The exported file stores grid points and values for the solution on such
points. Note that exported points are rescaled so that the biggest axis have a
unitary length and the other axis is scaled accordingly. The solution is both
rescaled and traslated: as a result, solution in POVray plot always goes from
0 to 1. This is simply to obtain a nice plot in many different situations..

To export the geometry, add in the INPUT.m file the following line:

exportPOVray.exportGeo = 1;

To modify camera, light, shining and color settings, you must modify a
few parameters in the POVray geo export.m file.
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3 Elementary Geometries

In this section I’ll show you the implemented elementary geometries and
provide an example of their inserting into the INPUT file. Let’s start with
a picture of the geometries all together! Green circles represent charges
(sources), while black stars represent control points.
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Figure 1: Elementary geometries

3.1 Sphere

This is a generated sphere. Charges are spread all over the surface. For
plotting reasons, surface density plots avoid plotting the poles: this is for
purely programming reasons, for the computed area was inaccurate near the
poles and the surface density thus had a numerically wrong peak. Exceed
the number of elements if you want to investigate the polar regions.

In order to create a sphere you need to specify the following parameters:

% ---------- Sphere ----------

sups(1).type = ’sphere’;
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Figure 2: Control Points and
Sources Figure 3: Plotted surface

sups(1).Rad = 0.6;

sups(1).xyz = [-1,2,1];

sups(1).nth = 20;

sups(1).nphi = 40;

The number of elements nth and nphi represent respectively the number
of divisions from North to South and the number from West to East (that is
latitude and longitude).

3.2 Cylinder

The cylinder object creates an object whose axis is in the direction of the
specified vector. The length is specified by the parameter L.
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Figure 4: Sources and Control Points for the cylinder

You create a cylinder by (here I gave it the number 2 but it’s arbitrary):

% ---------- Cylinder ----------

sups(2).type = ’cylinder’;

sups(2).Rad = 0.3; % Radius

sups(2).Len = 6; % Length

sups(2).xyz = [0,-2,-1]; % Origin (mid point)

sups(2).nth = 10; % # of angular divisions

sups(2).nh = 40; % # of length divisions

sups(2).vers = [0.7,2,0]; % axis direction

3.3 Cone

Cones are pretty simple shapes for they have coarse grid at the base and very
fine grid near the tip. The implemented cones are always truncated. If you
want a sharp edge, you choose a very thin top radius.
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Figure 5: Sources and Control Points for a sharp edge cone

A cone is created by (here I choosed the number 4 but it’s arbitrary):

% ---------- Surface 4 ----------

sups(4).type = ’cone’;

sups(4).Rbase = 0.7; % bottom radius

sups(4).Rtop = 0.01; % radius for top

sups(4).Len = 4; % length = height

sups(4).xyz = [2,1.5,0]; % origin of the mid-height point

sups(4).nth = 20; % # of angular divisions

sups(4).nh = 80; % # of height divisions

sups(4).vers = [0,0,1]; % Axis direction
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3.4 Plane

Creating a plane is a little more tricky. A plane can be oriented only
as the Cartesian planes. The orientation is specified via the parameter
sups(jj).orient, that can be set to ‘xy’, ‘yz’ or ‘xz’. The other values
‘x1min’, ‘x1max’ and ’x2min’, ‘x2max’ specify the plane extension along its
surface (that is if you set sups(jj).orient = ’yz’, x1 will represent the
‘y’ coordinate and x2 will represent ‘z’). Then, the vale ‘x3val’ represent the
not varying coordinate (that is ‘x’ in our example). If unsure, just try it.

Figure 6: Sources and Control Points for a plane

Control points are placed around 45 degrees from each axis, closer to their
respective source than to others. That’s for numerical stability: choosing
control points in the middle of the square defined by four sources resulted in
an unstable problem and a badly oscillating surface charge on the surface.

% ---------- Plane ----------

sups(3).type = ’plane’;

sups(3).x1min = -5;

sups(3).x1max = 5;

sups(3).x2min = -3;

sups(3).x2max = 4;

sups(3).x3val = -2;

sups(3).n1 = 60;

sups(3).n2 = 40;

sups(3).orient = ’yz’;
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sups(3).d_cc = 0.02;

This create a plane where ‘y’ goes from -5 to 5, ‘z’ from -3 to 4 and ‘x’
has the value -2.

3.5 Line

Line objects are straightforward: A is the starting point and B the end.

Figure 7: This is how a straight line looks like

% ---------- Line ----------

sups(5).type = ’line’;

sups(5).xyzA = [2,-2,4]; % starting point

sups(5).xyzB = [2,-2,-3]; % ending point

sups(5).nL = 50;

3.6 Wire Loop

Here are input parameters for a wire loop.
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Figure 8: Wire Loop

% ---------- Wire Loop ----------

sups(6).type = ’loop’;

sups(6).Rad = 1; % loop radius

sups(6).xyz = [3,-3,-1]; % loop center

sups(6).nth = 50; % number of elements

sups(6).vers = [0,1,1]; % orientation versor

3.7 Creating your own geometry

To create your own geometry, you have to write down a function returning:

1. position rq for sources, dimension Npoints ∗ 3

2. position rc for control points, dimension Npoints ∗ 3

3. matrices xxc, yyc, zzc of control points positions in meshgrid format
(they will be used to plot surfaces)

4. matrix of element area Amat (or length Lmat for line elements) in the
same format as xxc

You can call this function something like my own geometry creator.m

and modify the geometry creator.m file in order to take it into account.
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Also, if you want a surface charge plot you have to create another function
that reshapes the vector of charges generated by the solver, matching the
same meshgrid format as xxc, yyc, zzc, Amat..

The dirty way - a hint
There’s actually another way: if you are not interested in plotting the surface,
you could simply add a surface from the input file and give it a type attribute:
sups().type = ’666’. This will result in an unknown surface and thus will
probably not generate errors. Then you must assign values for the sources
and control points position to rq and rc attributes of your surface. Maybe
you could write a little script to fill sups().rq and rc and place it in the
MAIN.m file, right after the INPUT calling. The method should result in a
conductor that is invisible in surface plots, but that affects the field: contour
planes should be alright. Haven’t tried this out anyway.
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4 Numerical Method

4.1 Lumped Charges Method

A brief overview of the numerical method. The underlying idea of the method
is: “a conductor is an equipotential body, right? So, let’s place a number
of charges on every conducting surface and then impose that the electric
potential generated by all the charges on the control points of a the same
surface be the same”

Let’s place ourselves on the ith control point. The electric potential in-
duced by all the charges follows the superposition principle:

Vi = 1
4πε0

[
1
r1i

1
r2i

1
r3i

... 1
rNi

]

q1
q2
q3
...
qN


where rji represents the distance between the jth source and the ith control

point. Now, if the control point belongs to an object whose potential was
imposed (through the input file), then Vi is a known value, otherwise the
voltage Vi will will be kept as unknown. Conductors whose voltage is not
set require an additional condition, that is the value for total charge. This
constraint for the kth body reads:

[
1 1 1 ... 1

]

qk1
qk2
qk3
...
qkNk

 = Qk

We end up with a system in the form:

[
A C
D 0

](
q
V

)
=

(
Vimposed
Qimposed

)
where

A stores the influence coefficients 1
4πε0

1
rji

, C multiplies floating (and thus un-

known) potentials, D is made of ones for charges relative to floating potentials
(and thus imposed total charge), picking only the charges belonging to the
kth body and b is the right hand (known) term.

NOTE THAT since I didn’t like to have a matrix storing values ranging
from 1E12 (that is 1/ε0) to unitary values, I lumped the ε0 coefficient into
the charges value. In the input file you must enter a value that is the
real physical charge you want to impose, divided by ε0!
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4.2 Capacity computation

First of all note that Capacity computation may be quite expensive, for Qsci
must solve the linear system N times, where N is the number of objects.
Computing the capacity of our object is achieved by computing the so called
elastance matrix, followed by it’s inversion and one last little step.

Let’s say we have three objects with total charges q1, q2, q3. We can write:
V1 = s11q1 + s12q2 + s13q3

V2 = s21q1 + s22q2 + s23q3

V3 = s31q1 + s32q2 + s33q3

that is:V1V2
V3

 =

s11 s12 s13
s21 s22 s23
s31 s32 s33

q1q2
q3


To compute the elastance matrix s, Qsci puts a unitary charge on a

surface, null charge on the others and computes induced potentials. After
finding s, Qsci inverts it: s = s−1. This is called capacitance matrix.
Then, Capacities are readily found:Cij = −cij, for i 6= j

Cii = cii −
∑
j 6=i

Cij

The coefficients Cii represent the capacity of the ith object with respect to a
reference huge sphere at the borders of the universe, while the coefficients Cij
are the capacity of the capacitor made by the ith and jth objects. A Capacity
matrix made with those capacities is displayed in the command window.

Remember what I said about q and ε0? The capacities must be
multiplied by ε0 in order to obtain the real physical value!
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5 Examples

In this section some colored plots!!!

5.1 Melting Pot

Here’s a simulation of a melting pot of the objects that Qsci implements.

Object Imposed Voltage [V] Resulting Voltage [V]
sphere 5 -
cylinder free -1.395
plane free -0.034
cone -10 -
line 0 -

Table 1: Imposed and simulated electric potentials for objects.

Figure 9: Charge density distri-
bution on the plane

Figure 10: Charge density dis-
tribution around the edge of the
cone
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Figure 11: Charge density dis-
tribution on the cylinder

Figure 12: Charge density dis-
tribution upon the sphere

Figure 13: Eletctostatic potential contour lines.19



Figure 14: Sources and control points.
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5.2 Sharp Edge Effect

Here’s a nice pic about the intensification of charge density around sharp
corners!

Figure 15: Charge density around a sharp edge.
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5.3 POVray geometry

Here’s a geometry, similar to the the previous example’s, exported in a .pov

file and then rendered.

Figure 16: A geometry rendered with POVray.

5.4 Capacity of Isolated Sphere and Capacitor

As a quick benchmark, I calculated the capacity of an isolated sphere, whose
value is known to be 4πRε0 by theory. I’m proud to announce that on this
simple case, Qsci’s result is exact to the 0.6%, with around 200 distributed
charges!

The plane plates capacitor is a little harder to simulate and results vary
a lot.. 20% may be the case!

5.5 Electric Field plot

Here’s a cool shaded plot of the Electric Field intensity near a wire loop and
a cylinder. Note that the field tries to blow up near the wire and the cylinder
surface!
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Figure 17: Electric Field intensity.

5.6 POVray fields rendering

This how a POVray rendering of the exported file looks like. Theese are the
electric field and electric potential of a spherical conductive shell. Note that
the potential is constant along the shell and the electric field is zero. Also
note how faster the electric field blows up while approaching the surface!
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Figure 18: Electric Potential of a sphere.

Figure 19: Electric Field of a sphere.

The sphere has 30 lumped charges distributed in equatorial direction.
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