
FEM CODE FOR THERMAL
INSTATIONARY ANALISYS OF AN

ETEROGENEOUS MATERIAL

Stefano Boccelli

July 2014

1

Contents

1 Introduction 3

2 Mesh Generator 6
2.1 Introduction . 6
2.2 Automated Procedure . 6
2.3 Removing undesired triangles 6
2.4 Saving the mesh . 7
2.5 Mesh for the analized problem 7

3 Preprocessor 9

4 Solver 11

5 Numerical Analisys 13

2

1 Introduction

With this document I wish to give you a brief overview of a finite element
code I’ve implemented under Octave / MATLAB, able to solve parabolic
problems.

I’ve written this code for learning purposes, while studying for a course of
Numerical Methods for Differential Problems in Politecnico di Milano. It’s
quite simple, still not implementing non-omogeneous Neumann conditions,
but I upload this anyway since it’s cute and it might be useful to someone
studying the basics of FEM methods! Oh, also the mesh generator is pretty
cool, although rough, and playing around with the parameters you should be
able to obtain an acceptable mesh.

The code is born for a specific purpose: simulating the temperature tran-
siend into a Emmental piece of cheese. Then I made a mistake, imposing a
lower thermal diffusivity for the air in the bubbles than the cheese itself, so
the result was something different.. like a piece of wood into emmental for
example! You can fix that by modifying a file..

Ok, the point is that if want to study the temperature transient inside
a non omogeneous material, like a porous metal, a sponge, carbon particles
into a metal microstructure or maybe some cheese, you clearly have to set
a different value for the thermal diffusivity µ in every region. Consequences
are:

1. Need to create a as-uniform-as-possible mesh in the region of the inter-
face

2. Ability of the preprocessor to assign different values of µ to certain
triangles (pretty easy after all)

3. We obtain solutions much more intresting than the usual µ = const
case!!

In the following paragraphs I’m showing the main features of the com-
ponents: mesh generator, preprocessor and in the end the solver. Then I’ll
show the results of a simulation.

Here are some examples of eterogeneous materials:

3

Porous Aluminum

Carbon into a ferrous alloy

4

Everyday materials

5

2 Mesh Generator

2.1 Introduction

The implemented mesh generator creates a Delaunay triangulation exploiting
a “built-in” Octave / MATLAB algorithm.

The first step is the definition of a point cloud, defining the desired border.
The numerical domain is defined through the file mesh prelude rect2.m.
The heart of the mesh generator is the file MAIN grid.m, whom call-

ing activates an iterative procedure showing to the user the mesh regularity
details and allows to:

• automatically modify the mesh, searching for too much distorted tri-
angles and dividing them into smaller ones

• adding points by hand

• saving the mesh

• removing triangles

2.2 Automated Procedure

The mesh generator implements an automated procedure (as I briefly pointed
out in the previous paragraph) to make the mesh more regular. The proce-
dure focuses on the following steps:

1. identification of the triangles having a sphericity or area bigger than a
certain limit specified in the file triangulation parameters.m

2. generation of some more points on the longer triangle sides

3. “equivalence” procedure: elimination of points more clustered than a
certain radius, called cuttingR and defined into the triangulation parameters.m
file

2.3 Removing undesired triangles

In the case there were internal borders into the domain, the triangulation
procedure will triangulate anyway the region they define. It’s necessary to
eliminate those triangles before saving the mesh.

6

2.4 Saving the mesh

The saving procedure creates some files called msh *.dat containing the mesh
details. Those files are read by the preprocessor for the imposition of bound-
ary conditions.

2.5 Mesh for the analized problem

Here is shown the initial point cloud for the thermal transient problem I
examined. Points beloning to domain borders (and internal discontinuous µ
borders) are marked deeper. The rest are auxiliary points, added to obtain
an omogeneous and structured mesh in the critical interface regions.

Starting nodes

7

First trial mesh and final one

In the image you can see some red and some gree triangles: the mesh gen-
erator draws in red the triangles whose sphericity in smaller than a certain
threshold. I mistakely choosed a maximum sphericity of 3, so almost no tri-
angles were drawn in red.. The points circled in purple have been added with
the mesher option “add points by hand”, to achieve a little more regularity
in the final mesh.

8

3 Preprocessor

The implemented preprocessor asks to choose nodes where to apply bound-
ary conditions and triangles on which you want to impose a value of the µ
constant different than the default.

First of all the preprocessor imports the files that have been generated by
the mesh generator: it’s necessary for those files to be located in the working
directory.

To impose the BCs or the value of µ on the triangle you do as follows: let’s
talk about Neumann conditions for example.. In the file bcs value.m you have
to define as many functions Ni as many different Neumann values you want
to impose. The Nis are then assembled into the cell array Neu funct{}, being
careful to the order!!. During the preprocessor running, a Label is asked: the
preprocessor is referring to the position (of the function you want to impose)
into the cell array. Here’s an example:

N one = @(x,y) 0; % omogeneous Neumann
N two = @(x,y) 2*x;
Neu funct = {N one, N two};

So, label = 1 is Neu funct(1), which is N one!
The result of the preprocessing is memorized. It’s necessary to open the

Solver without clearing the memorized variables!!
In the following picture, the preprocessed mesh: eterogeneous material

regions are selected and the opportune µ have been defined. The preprocessor
shows in light blue the points over which Dirichlet conditions have been
imposed, in purple Neumann points and in green the triangles with modified
thermal diffusivity.

9

10

4 Solver

The implemented solver works with the variables saved by the preprocessor
into the structure msh.*

You can modify the file domain parameters parabolic.m to choose the
proper Θ - method constant and the timestep and time interval.

First of all the solver assembles mass and stiffness matrix, integrating P1
shape functions over the grid triangles. BCs are imposed by direct imposition
over rows, and then the matrix is “simmetrized”. The quadrature formula
used to integrate shape functions is 2nd oder and it evaluates the functions
in the mid points of the triangle over which we are integrating.

Since we are solving a parabolic problem, the known term is adjourned
every step: it’s then necessary to correct it at every step to impose BCs,
so completing the direct imposition over rows started out of the cycle by
processing A.

CUIDADO: the solver is actually only able to impose Neumann
= 0 conditions!

In the following picture the sparsity pattern of the matrix A. Rows and
columns modified are drawn with red and green lines.

11

12

5 Numerical Analisys

For the following numerical analisys, Dirichlet unitary condituions have been
set on the lower border and omogeneous on the upper. Initial temperature
was omogeneous too. On the two sides, I choosed Neumann = 0 in order to
simulate the simmetry: is’s not a tiny slice of material, it’s a long and thin
slice and we only want to simulate a part of it. Neumann = 0: no heat flux.

In the following picture, a few screenshots of the solution at different
timesteps.

13

Solutions at various timesteps

Solution represented by interpolating the values on the nodes and then
smoothing

14

6 Final Remarks

Grazie di aver volato con noi!

15

