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1 Intro

This document is about a little script I’ve made one afternoon just to plot
some colors. No guarantees at all, not even that what I wrote is correct.

In this document I’d like to talk about a naive implementation of a Metropolis
algorithm for simulating the Ising model in 2 dimensions. I’ll show a few results for
a 100 × 100 spins lattice, whose values can be only ±1.

In the end I’ll compare the computed magnetization to the analytical results due
to Onsager.
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2 Algorithm

The numerical solution is based on a Metropolis algorithm. Here are the main steps
and a few Matlab/Octave commands:

Step 1 - Initial conditions
Creating a N ×N lattice, with randomly chosen spins, or a lattice of parallel spins.
For a better thermalization, one should better choose random spins when above the
critical point and parallel spins if underneath.

% Spin da -1 oppure 1

spinMat = round(rand(N,N))*2 - 1

% Spin tutti su

spinMat = ones(N,N)

Step 2 - Cycle
A cycle is started: at every step a lattice position is randomly chosen, it’s spin is
flipped and the energy variation is computed. The cycle keeps going until some
chosen variables reach a steady state.

Step 2.1 - Energy computation
Well, a random spin on the lattice is choosen and flipped. If no external field is
applied, energy can be written: E = −J

∑
p.v. sjsi, so ∆Ei = 2Jsi

∑
p.v. sj.

Step 2.2 - Probability computation

This step attributes to out “flipping action” the real probability. One must accept
the new configuration with a probability linked to the caused energy variation.

The probability associated to the flipping is given by the Boltzmann factor:
Pflip = e−β∆E. The spin is actually flipped if:

if rand() < P_flip % ESEGUI INVERSIONE

spinMat(ii,jj) = -spinMat(ii,jj);

E = E + dE;

end

Note that for a quicker convergence, Metropolis methods usually simply accept
the flipping if ∆E < 0 while compute the probability if it’s bigger than 0.
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3 Details on the numerical method

3.1 Boundary conditions

I’ve imposed periodic BCs, implemented through the module(x) function: Here’s an
Octave/Matlab implementation of the “module” function:

function j = modulofunction(i,N)

if (i > N)

j = i - N;

elseif (i < 1)

j = N + i;

else

j = i;

end

return

3.2 Initial conditions

One can use as initial conditions a lattice of randomly choosen spins (some are up
and some others down), or a uniform lattice. As stated before, choosing smartly
the ICs makes convergence a lot easier and makes thermalization faster: one should
use a uniform grid if trying to compute a state under the critical temperature, while
random spins are better for simulations above the critical point.

Another possibility, that shows useful when problems are big, is starting a sim-
ulation with the equilibrium condition that was obtained for a similar temperature
(maybe in the previous step).

3.3 Convergence

I’ve assumed the method was converged when the total energy of the spin lattice and
the total spin did reach a reasonably stationary value. Total spin (aka magnetization)
is computed with the command:

SpinTot = sum(sum(spinMat));

Here’s a messy convergence plot for Total Energy and Total Spin at a certain
temperature. Note that since the system is 100 × 100, the maximum value for the
Total Spin is 1E + 03, thus fluctuations are smaller than 10%. I’ve then choosed to
average the last half of the values.

3



Figure 1: Convergence plot for T/Tc = 2.21
Note that starting from a random (disordered initial condition), convergence is quite
quick and the Total Spin soon approaches the value 0.

4 Results

4.1 Near the critical point

As we know from both theory and experiments, while approaching the critical point,
fluctuations become bigger and bigger and correlation lengths diverge. Here is shown
the 100 × 100 spin lattice in some conditions approaching the critical Temperature.
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Figure 2: T/Tc = 3.54 Figure 3: T/Tc = 1.26

Figure 4: T/Tc = 1.11 Figure 5: T/Tc = 1.02

4.2 Metropolis vs Onsager

Magnetization was computed for some temperatures across the critical point and
is here plotted superimposed to a line showing the analytical divergence power law
(β = 0.125, by Onsager). The critical temperature for 2D Ising can be demonstrated
to be around 2.26 if kB = 1 and the Heisenberg constand is J = 1.
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Figure 6: Spontaneous Magnetization vs Temperature for 2D Ising model. Solid line:
power law, exponent β = 0.125. Markers: numerical results

5 Matlab script

Here’s a script, that runs on Matlab 2014. Sorry, comments are in Italian.

% ###########################################################

close all

clear

clc

global spinMat xMat yMat N

% Various parameters

N = 100; % spins per side
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NmaxIter = 5000000;

kB = 1;

T = 8; % Temperature

beta = 1/( kB*T );

J = 1;

% Creating spin and coordinates matrix

% coordinates are not used anymore, anyway..

spinMat = round(rand(N,N))*2-1;

%spinMat = ones(N,N);

[xMat,yMat] = meshgrid([1:N],[1:N]);

E = 0; % ARBITRARY!

Evect = zeros(NmaxIter,1);

Svect = zeros(NmaxIter,1);

% Plotting Initial condition

plotfunction(0)

plotNum = 0;

plotCount = 0;

for it = 1:NmaxIter

% Flipping a random spin

rspin = round( (N-1)*rand(2,1) ) + 1; % this gives a random index

% inside the matrix

spinVal = spinMat(rspin(1),rspin(2));

deltaE = deltaEcalc(rspin, J);

% % Probability of change

% % this commented out accepts the flipping a priori if DeltaE < 0

% if deltaE < 0 % THEN FLIP!

%

% E = E + deltaE;

% spinMat(rspin(1), rspin(2)) = -spinVal;

%
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% else % LET’S SEE IF HE’S LUCKY!

probFlip = exp(-beta*deltaE);

if rand() < probFlip

E = E + deltaE;

spinMat(rspin(1),rspin(2)) = -spinVal;

end

% end

% Saving Energy Value

Evect(it) = E;

% magnetization:

Svect(it) = sum(sum(spinMat));

% PLOT

plotCount = plotCount + 1;

if plotCount > round(NmaxIter/5)

fprintf(’Step %d of %d\n’, it, NmaxIter)

plotNum = plotNum + 1;

plotCount = 0;

plotfunction(plotNum)

end

end

% Energy Convergence plot

figure

subplot(1,2,1)

plot([1:NmaxIter],Evect(1:end),’+k’)

grid on

ylabel(’Energia’,’FontSize’,14)

subplot(1,2,2)

plot([1:NmaxIter],Svect,’+r’)
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grid on

ylabel(’Spin totale’,’FontSize’,14)

% ###########################################################

Function for plots

% ###########################################################

function plotfunction(numero)

global spinMat xMat yMat

close all

h = figure;

hold on

imagesc(spinMat)

colormap(autumn)

xlim([1,size(spinMat,2)])

ylim([1,size(spinMat,1)])

print(h, ’-dpng’, [’./imgs/ising_’,num2str(numero),’.png’])

pause(0.0000001) % without this it will plot only at the end

return
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