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Abstract

The behavior of supersonic flow around a slender body (a von Karman-shaped nose-cone) was studied in this work. The nose-cone, or
ogive, was subjected to a flow at Mach 3.5 in the S-4 blow-down wind tunnel. The forces on the ogive were measured for different angles of
attack by use of an internal 3-component sting balance. The calibration method and the data acquisition chain are presented and the results
are commented accordingly. The resulting force and moment coefficients of the ogive were thereafter compared to analytical solutions.
Good accordance is reported for both axial and lift coefficients, while the drag coefficient is underpredicted by the theoretical methods.
The shockwave behavior around the ogive is studied by three visualisation techniques: shadowgraph and schlieren, oil visualisation and
by use of a water-table. Both the shadowgraph and oil visualisation experiments were performed in the S-4 wind tunnel. The results were
compared to theoretical shock behavior and to the hydraulic analogy provided by the water-table experiments. Merging the outcomes of
the schlieren, oil visualization and water table was possible to propose an interpretation of the flow pattern while the shadowgraph was
unable to provide meaningful results.
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2 THEORETICAL BACKGROUND

Figure 1: Solution of eq. (1)

1. Introduction

The objective of this lab is to investigate the behavior of compress-
ible flow around a slender body (an ogive). The lab consists of two
main experiments: in the first part the aerodynamic coefficients of
the ogive are determined by subjecting the model to a supersonic
flow at Mach 3.5. In the second part the flow around the ogive is
visualised by use of shadowgraph/schlieren, oil visualisation and
by use of a water table.

2. Theoretical Background

2.1. Flow past a cone

The solution of the supersonic flow over a conical body of revolu-
tion is reported in [1] to be governed by eq. (1). This equation can
be solved numerically as explained in [2].
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In fig. 1 the solution of eq. (1) is given in terms of shockwave
angle on cone angle. The nosecone profile is provided by eq. (2)
as a body of revolution. The semiangle of the ogive at the nose tip
can be further derived computing the derivative of the thickness

distribution function (eq. (2)) and developing it in Taylor series
around x = 0 as showed in eq. (3). A direct computation returns
a nose half-angle of ∼ 13o.
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2.2. Slender body theory

A simplified approach to the study of aerodynamic forces acting
on a body of revolution is provided by the so called slender body
theory. Such theory applies to slender bodies of revolution, where
the presence of the body may be introduced as a small velocity per-
turbation to an otherwise uniform flow. The equation to be solved
is:

�
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∞

� ∂ 2φ

∂ x2
+
∂ 2φ

∂ y2
+
∂ 2φ

∂ z2
= 0 (4)

whereφ is the velocity perturbation. The solution may be obtained
by distributing sources along the symmetry axis and imposing the
tangency condition on the body wall, see [3]. The result, first ob-
tained by von Kármán, leads to an expression for the drag coeffi-
cient:

S(L)CD1 = −
1
π

∫ L

0

∫ x

0

S′′ (ξ)S′′ (x)dξdx (5)

where S is the ogive cross section, S′′ its second spatial derivative
and L the length of the body. eq. (5) evaluated for the given body
returns a value S(L)CD1 = 6.122× 10−5. The procedure has been
generalized to yawed bodies of revolution by Tsien [4], by exploit-
ing linearity and introducing a cross-flow. Following the derivation
in [3], the normal and axial forces can be expressed and rotated,
to obtain lift and drag:
¨

N = 2αq∞S(L)
A= q∞S(L)CD1 − q∞S(L)α2 =⇒

¨

L = N cosα− Asinα

D = N sinα+ Acosα

α being the angle of attack and q∞ the dynamic pressure of the
free stream.

It’s important to remark that this theory is linear and typically
helds significant error for the drag prediction. Moreover, its valid-
ity is limited to the range of angles of attack where flow remains
attached, condition which in the present case is satisfied, accord-
ing to the performed flow visualization.
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4 CALIBRATION
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Figure 2: Sketch of the setup for the shadowgraph and schlieren

3. Experimental Setup

3.1. Wind Tunnel

The measurement of the aerodynamic loads on the ogive have
been performed in the von Karman Institute (VKI)’s S4 blow-down
supersonic wind tunnel, the test-area of the tunnel is 8×10 cm. A
sting-type AR3820 3-axis balance, produced internally at VKI, has
been used. The strain-gauges have been connected to a Wheat-
stone bridge conditioning system and the signal was then digital-
ized by a NI DAS on a DELL computer. The wind tunnel is equipped
with an incidence-varying mechanism based on a stepper motor,
able to change the angle of attack during the experiment by using
a turns regulator.

3.2. Schlieren and Shadowgraph

For the shadowgraph and schlieren visualizations a sketch of the
basic configuration is reported in fig. 2. A light source provided
by a standard light bulb is focused with a slit and pointed to a
mirror that directs the light ray parallelly towards the test section
to another mirror that orients the light ray in the direction of a
knife, placed in the focal point1. The image is then mirrored to a
screen on the other side of the room.

3.3. Water Table

The water table is composed by a 1.6m-long × 0.9m-wide slightly
inclined table topped by a reservoir whose water flow rate can
be regulated. The water depth can be regulated modifying the in-
flow rate or also regulating the height of a knife placed just after

1the knife is present only for the schlieren tests

Regulated inflow

h0

h

Figure 3: Sketch of the setup for the water table visualizations

the reservoir. On the bottom of the slightly inclined plane, that is
transparent, a light to enhance the visibility of the flow pattern
can be turned on. A simplified sketch of the setup is reported in
fig. 3.

4. Calibration

4.1. Incidence calibration

The output of the incidence mechanism is given in terms of turns
of the motor shaft and has to be linked to the actual model inci-
dence. The calibration was performed connecting a flat plate to
the movable sting and using skewed plexiglass blocks to generate
a reference angle. The sting was then moved until a zero incidence
was reached, checked using a bubble level.

The calibration curve reads:

Nt = −32.25 αdeg − 1.18 ± 7 (20 : 1) (6)

where Nt is the number of turns of the motor shaft and αdeg the
incidence expressed in degrees. The uncertainty of ±7 turns was
found empirically, being basically the uncertainty of the bubble
level, scaled to represent a 95% confidence level. In terms of angle
of attack the uncertainty becomes: δαdeg ≈ 0.2◦.

4.2. Pressure transducer calibration

The pressure transducer used for the reservoir stagnation pressure
measurement is a Valydine sensor that is a differential transducer
that measures the difference between the two provided channels,
one for ambient pressure, the other for the reservoir pressure. The
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4.3 Balance calibration 4 CALIBRATION

variation of atmospheric pressure from the moment of calibration
to the moment of performing the actual experiments was found
to be around 0.2% of the reservoir pressure. This effect was thus
neglected.

The calibration has been performed using an hydraulic pressure
calibrator. This device consists of a vertical piston inserted into a
chamber filled with oil. On top of the piston weights can be stacked
to increase the pressure. The piston is raised and leveled to be free
in order to have the pressure from weights acting on the oil instead
of the external case. Several weights have been tested separately
recording the voltage output of the pressure transducer. At the be-
ginning problems have been experienced with anomalies in the
returned voltage values: the error has been stated to be caused by
static friction of the piston disk against vertical walls; the solution
provided to this issue has been to put in slow rotation the disk
before measuring in order to reduce this bias effect. Moreover a
slow constant drift has also been recorded, probably due to a small
leak, hence the calibration operations have been performed as fast
as possible. The calibration law is reported in fig. 4.

4.2.1. Uncertainty determination

The uncertainty on the voltage value has been computed consider-
ing the fitting line V = f (P) obtained by a least-squares approach
on a set of calibration measurements performed applying a set of
known loads Fi over the hydraulic calibrator, hence giving a set of
applied pressure values pi , and retrieving a set of voltages Vi as a
response. The uncertainty on the value of the loads has been ne-
glected so the only contribute is given by uncertainty on the fitting;
this has been estimated as for section 5.3 where ei = Vi − f (pi)
is the fitting error and f (pi) is the linear fitting function. Assum-
ing that the uncertainties for the coefficients of the regression line
δk,δb are negligible, the computed uncertainty value obtained
is:

δp = 0.072 [bar]

4.3. Balance calibration

Before starting the calibration, the acquisition system was config-
ured. The acquisition system has a range between ±5V and the
maximum axial load on the balance is 20N. The amplifier is regu-
lated such that the balance output, corresponding to the 5V limit of
the acquisition system. The Nyquist filter was regulated at 10kHz
and the sampling frequency was set at 1kHz. By doing this the sig-
nal is over-sampled and the mean value measured will converge
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Figure 4: Calibration law for Validyne pressure transducer

faster than in the case where the Nyquist criterion is tightly re-
spected. The acquisition time for each measurement was set at 1
second, hence providing enough samples for a converged mean
output.

The balance produces a voltage for each force applied, ideally each
voltage is proportional to only one of the three forces. Due to in-
terference between the forces a calibration matrix had to be de-
termined. Furthermore a small offset due to the amplifiers is ob-
served. This yields to the following linear system.
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By applying consecutively a pure axial force (Fx), side force (Fy)
and pitching moment (M), the individual coefficients of eq. (7)
can be determined. For example, if a pure axial force is applied
the system becomes the following
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and the coefficients can be easily found by applying a linear regres-
sion. The balance is mounted on a table which was leveled using
a plumb rule. The balance is excited consecutively by a pure axial
force, side force and moment. For each force direction 22 different
loads are applied to the supports, 11 weights in negative direction
and 11 in the positive direction. It must be noted that for the axial
component only negative forces can be applied in this setup. The
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result of the calibration procedure is given in figures fig. 5, fig. 6
and fig. 7. The coefficients of the linear system can be retrieved
from a linear regression. The coefficient of the offset vector are
not constant as one would expect. The average value is therefore
chosen for the force calculation. After inversion of eq. (8) the force
can be found from the following system:
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Figure 5: Calibration of the sting balance: Axial force
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Figure 6: Calibration of the sting balance: Side force
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Figure 7: Calibration of the sting balance: Moment

The method to calculate the uncertainty on the balance calibration
is discussed in section 5.3. The resulting values are given in the
table below.

Measured Variable Dependent Variable

δUx ±0.0103 V δFx ±0.1059 N
δUy ±0.0008 V δFy ±0.0056 N
δUm ±0.0029 V δM ±0.0004 Nm

Table 1: Uncertainty on the balance calibration.

The uncertainty on the axial force is the largest, this is logical
when comparing the linear regressions in fig. 5, fig. 6, fig. 7. The
largest variation is found when applying a pure axial force. To
evaluate the calibration matrix a validation test is performed in
section 4.3.1.

4.3.1. Validation of the calibration matrix

The calibration matrix is validated by comparing the applied force
with the measured force. The results are given in fig. 8, fig. 9,
fig. 10. The largest relative error is found near the origin. A non-
zero error in the origin is due to the variable offset found during
the calibration procedure, which has a larger impact on smaller
values.
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Figure 8: Validation of the sting balance: Axial force
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Figure 9: Validation of the sting balance: Side force
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Figure 10: Validation of the sting balance: Moment
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Figure 11: Center of gravity and aerodynamic center of the ogive.

5. Results

5.1. Center of gravity and aerodynamic center

The center of gravity of the balance is derived from measurements
without the flow, thus the only force acting on the ogive is it’s
weight (and a small contribution of the balance itself). First of
all the total mass acting on the balance can be retrieved from the
imaginary lift force.

m=
−Fy cosα+ Fx sinα

g
= 0.155 [kg] (10)

Knowing the center of the balance (XCB = 76mm from the tip of
the ogive) the center of gravity of the ogive (XCG) can be computed
by the following relation

M = (XCB − XCB)Fy (11)

(XCB − XCG) =
M
Fy
= cte (12)

SinceM and Fy are vectors, the center of gravity is taken as the
mean of the result.

(XCB − XCG) = 8.82 [mm]

The aerodynamic center can be found in the same way, only now
the ogive is subjected to the flow. Since rhe moment in the aero-
dynamic center is independent from the angle of attack, the aero-
dynamic center is retrieved from:

MAC = −Fy(XCB − XAC) +M (13)

dMAC

dFy
= 0⇒ (XCB − XAC) = −

dMCB

dFy
= 15.3 [mm] (14)

5.2. Aerodynamic coefficients

The ogive has been tested in the wind tunnel at Mach 3.5 at angles
of attack from −6◦ to 6◦ in order to retrieve forces and aerody-
namic coefficients.
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5.2 Aerodynamic coefficients 5 RESULTS

Conditions in the test chamber are found by relating the total pres-
sure in the reservoir to the static pressure inside the test section
via the isentropic relations for a nozzle. From the Valydine cali-
bration curve (fig. 4), the pressure in the reservoir is found to be
P0 = 7.70 bar. Such a pressure is smaller than the value expected
a priori and this might be attributed to the process of Valydine cal-
ibration (see the calibration section for a description of the faults
into the system) or to different working conditions of the com-
pressed air supply line.

The static pressure in the test section is obtained by:

P = P0

�

1+
γ− 1

2
M2
�γ/(1−γ)

= 0.101 ±0.072 bar (20 : 1) (15)

The static pressure allows a direct computation of the dynamic
pressure q∞:

q∞ =
ρU2

2

=
γPM2

2
= 8.6539× 104 ± 809.47 Pa (20 : 1) (16)

Although the balance is designed to compensate the thermal ef-
fects, temperature gradients among strain gauges may alter the
results. The first step in processing experimental data is thus com-
pensating this spurious temperature effect. Data was acquired be-
fore and after the test, in order to obtain values at zero load. The
temperature drift was thus identified and removed by assuming a
linear growth of the drift in time.

Another interference to the measurements is due to the weight
of the ogive and the balance itself. According to the convention,
for positive angles of attack, the weight induces an additional ax-
ial force, while the normal force and the moment are reduced, so
that corrected axial force (A ), normal (N ) and momentum (M )
read:







A =Am −mg sinα

N =Nm +mg cosα

M =Mm +mgd cosα

(17)

where measured quantities are identified by the subscript m, while
aerodynamic forces are expressed without subscript and are ex-
pressed in the center of the balance and d is the distance between
center of balance and aerodynamic center. Should be noticed that
the forces are currently expressed in the center of balance.

The moment has then to be transported from the center of balance
(CB) to the aerodynamic center (AC). Following the convention,
we have:

MAC =MCB +N (xCB − xAC) (18)

Finally, forces are rotated into wind axis, in order to obtain lift and
drag, according to:







L =N cosα−A sinα

D =N sinα+A cosα

M =MAC

(19)

Notice that according to the definition of aerodynamic center, the
moment becomes constant. The aerodynamic forces obtained are
shown in fig. 12, fig. 13 and fig. 14, where the uncertainty on the
angle has been omitted from the graphics, being approximately
equal to 0.2◦ and thus small with respect to the effect of the other
sources of uncertainties. The uncertainties for the aerodynamic
forces are obtained by adding the uncertainty due to the calibra-
tion curve to the that of the fluctuations of the voltage during the
measurement:

δF =
q

(δF)2calib + (δF)2fluct (20)

Lift and drag coefficients are compared with values obtained with
the slender body theory, extended to inclined bodies of revolution.
Results are shown in fig. 15, fig. 16 and fig. 17. A comparison with
the moment coefficient of the slender body theory is not reported
since its formulation requires more insight with respect to (wrt)
the lift and drag ones. A formulation can be found in [4]. Aero-
dynamic coefficients are also compared with values obtained with
Missile DATCOM, that is found to approach very well the slender
body theory prediction for the drag and the measured values for
lift and moment coefficients. Should be recalled that the aerody-
namic moment computed in the aerodynamic center for a symmet-
ric body is zero: the slightly different values predicted by Missile
DATCOM and the measured ones are indeed very small. Uncertain-
ties justifying this behavior may come from imperfections in the
ogive, misalignment in the test section and errors in the incidence-
mechanism calibration, together with errors in the computation of
the exact position of the aerodynamic center.

According to the manual [5], Missile DATCOM employs the Van
Dyke hybrid theory for the inviscid component of the forces [6],
with viscous corrections by Jorgensen [7].

When comparing the measurements with the slender body theory,
one should recall that this theory is valid for inviscid flows around
very slender bodies of revolution. It’s well known that the parasitic
drag is usually not well predicted by this theory, as well as the lift
coefficient, that is usually slightly different than the theoretical
value CL = 2α.

The uncertainty of the coefficients is reported in terms of error bars
and is expressed for a 95% confidence level. As can be seen from
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Figure 12: Lift
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Figure 13: Drag

the formula previously reported, the uncertainty on the aerody-
namic coefficients depends on all the three measured quantities:
pressure, angle and forces.

5.3. Uncertainty analysis

The method for uncertainty quantification is explained with a prac-
tical example. Due to the number of measured values (sc. 5) and
the use of a linear fit (and the resulting linear system) the num-
ber of parameters which carry uncertainty is very large. To keep
the uncertainty quantification simple and understandable a cou-
ple of simplification and linearizations are applied which will be
explained in the remainder of this section.

The method is explained for the calculation of the lift coefficient
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Figure 14: Aerodynamic moment
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Figure 15: Lift coefficient
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(CL) given in eq. (21). The lift force can be expressed in terms
of axial and side force and when writing the angle of attack in
radians the linearization in eq. (22) can be used for small angles.
The dynamic pressure can be written in terms of the Mach number
and the stagnation pressure measured by the Valydine.

CL =
L

1
2ρV 2Sre f

(21)

L = Fy cosα− Fx sinα∼= Fy − Fxα (22)

This results in eq. (23). It is now assumed that the values for M , γ
and Sre f are absolute and constant during the experiments.

CL =
Fy − Fxα
γ
2 M2pSre f

(23)

The general form for the uncertainty on CL is then given by

δC2
L = (δFy)

2

�

1
γ
2 M2PSre f

�2

+ (δFx)
2

�

α
γ
2 M2PSre f

�2

+(δα)2
�

Fx
γ
2 M2PSre f

�2

+ (δP)2
�

Fy − Fxα
γ
2 M2P2Sre f

�2 (24)

The value now needed to be defined is the uncertainty on the mea-
sured variables. All the variables in eq. (24) are indirectly mea-
sured and are retrieved from a linear regression. The following
example for the balance output is thus also valid for the pressure
and incidence measurement. The variance of a sampled mean can

be estimated by

s2
U =

1
N − 1

N
∑

i=1

�

Ui − Ū
�2

(25)

with N the number of samples and Ū the sampled mean (output
voltage). The quantity (Ui − Ū) is now defined as the local error
ei , which is the difference between the measured voltage and the
linear fit, as illustrated in fig. 18.

Figure 18: Definition of the error on the linear regression.

The confidence interval on the measured voltage can then be com-
puted, assuming a student distribution, by

δU = ±
sU tN−1,1−α/2
p

N
(26)

with (1− α) the desired confidence interval. The final expression
on the uncertainty of the measured voltage can thus be written
as:

U = Umeasured ±δU volts 100 : α odds (27)

For the uncertainty of the dependent variable, in this case the
force on the balance, only the mayor contributor is considered (i.e.
neglecting the interference factors and their own uncertainties).
Which results in

δFi = AiiδUi (28)

with i the force direction or moment on the balance. For every
measured variable the uncertainty on the dependent variable is
summarized in table 2.

9



6 FLOW VISUALIZATION

Measured variable Dependent variable

δUx ±0.0103 V δFx ±0.1059 N
δUy ±0.0008 V δFy ±0.0056 N
δUm ±0.0029 V δM ±0.0004 Nm
δUp ±0.0850 V δP ±0.0718 bar
δNt ±7 δα ±0.2 ◦

Table 2: Uncertainty on the measured variables and their dependent vari-
able for a confidence interval of 95%.

Mass of TiO2 [g] Mass of Oil [g] Comments

1 6 Too liquid
6 6 Too liquid
9 6 Ok

Table 3: Compound mixture attempts

6. Flow Visualization

6.1. Oil visualization

Oil visualization is a technique very useful to understand complex
flow patterns around objects. It’s based on the experimental evi-
dence that a fluid compound with right viscosity and density prop-
erties, as for example a mixture of oil and titanium dioxide TiO2,
can be entrained by the flow shear stress and behave like the stress-
lines over the surface of the body. In the frame of the experiment
the compound chosen to visualize the flow was olive oil with ad-
dition of titanium dioxide to achieve the desired viscosity of the
oil layer in order to be able to detect the shear lines and, hence,
deduct the flow pattern near the ogive surface.

Before running the wind tunnel several attempts have been made
to converge to the most effective ratio between the oil and the
TiO2 powder that are qualitatively summarized in table 3.

The visualization tests have been performed for a value of the
Angle of Attack (AoA) = 5o and the best results are reported in
fig. 19 and fig. 20.

As it is possible to see, all the streamlines originating from the apex
of the nosecone are converging in the top-rear part of the ogive.
In [8] is reported that the flow around an ogive-cylinder revolu-
tion body at M = 2 is characterized by shear-lines joining along a
separation line S1 that begins at the station x

L = 4. This result is
in accordance with ours since for higher Mach numbers the sepa-
ration is expected to happen further downstream wrt lower ones

(a) Oil-Visualization of the ogive at α= 5o

M = 3:5

(b) Shear-lines interpretation sketch

Figure 19: Comparison of the visualization with an interpretation sketch

Figure 20: Oil-Visualization with shock footprint

[9, p. 16] and in the case examined in this work no evidence of
separation is encountered.

In fig. 20, is clearly noticeable an hyperbolic shape on the lower
wall of the wind tunnel. This hyperbolic shape of the footprint
identifies the nature of the shock occurring at the nose tip of the
ogive as a conical shock. In facts, regarding the fig. 21, the inter-
section of a cone with a plane is nonetheless an hyperbola.

6.2. Shadowgraph and Schlieren

Shadowgraph and Schlieren are two techniques that translate den-
sity differences into amplitude differences that our eyes can detect.
The basic working principle of those techniques is based on the
experimental evidence that light traversing a medium is slowed
down wrt its velocity in vacuum 3× 108 [m/s]. This velocity de-
crease is represented by the refraction index n= c

c0
. For gases there

exist a linear relationship between density and refractive index as

10



6.2 Shadowgraph and Schlieren 6 FLOW VISUALIZATION

Figure 21: Intersection of a cone with a plane

shown in eq. (29).

Schlieren and shadowgraph are somehow related, differences can
be however reported: schlieren illumination responds to the first
derivative of refractive index, and hence of density, while for
shadowgraph the relation is related to the second derivative of
it.

n= 1+ kρ (29)

k is the Gladstone-Dale factor and has a weak dependence on tem-
perature, wave-length (λ), gas nature. As reported in [10], optical
inhomogeneities refract or bend the light rays proportionally to
refractive index gradients over the cross-section plane normal to
the direction of the rays. The ray curvatures are given by:

∂ 2 x
∂ z2

=
1
n
∂ n
∂ x

(30)

∂ 2 y
∂ z2

=
1
n
∂ n
∂ y

(31)

the equations can be further integrated to get the component of
the angular deflection of the rays:

εx =
L
n
∂ n
∂ x

(32)

εy =
L
n
∂ n
∂ y

(33)

Figure 22: Schlieren Image of the ogive at α= 0o

From those equations we can infer that light beams are bended to-
wards zones with higher refractive index, and taking into account
eq. (29), hence, towards zones with higher density. In fig. 26 is
showed a schlieren image of the nosecone taken into account in
this analysis. At the nose tip is clearly visible a strong change in
illumination, that is hence related to a strong gradient of density,
due to a shockwave, that has a typical conical shape. The coni-
cal shape of the shockwave can be also inferred by the hyperbolic
footprint that can be noted on the back of the ogive: it could be re-
lated, as in the case of the oil flow visualization, to the intersection
of the conical shock with the side walls of the wind tunnel.

To compute the angle of the shockwave wrt the flow direction, the
FOSS program GIMP has been used. The length of the lines as, for
example, showed in fig. 22, has been computed and from them
the angle between the shockwave and the flow direction has been
calculated.
Comparing the two pictures for the axial-flow schlieren (fig. 22)
and for the inclined-flow (fig. 25) can be noted how in the first
figure the upper part of the shock is black while the bottom part is
white, in the second figure both sides are black. This indicates that
the knife configurations are different: horizontal knife for fig. 22
and vertical for fig. 25.

6.2.1. Axial Flow

With reference to fig. 22, that shows the ogive in pure axial non-
inclined flow, it is possible to note how the shockwave is not a
straight line but it has a curved slope. This curved shape is ad-
dressable to the fact that the flow, once deflected by the front
shockwave, generates expansion fans continously along the ogive

11



6.2 Shadowgraph and Schlieren 6 FLOW VISUALIZATION

Expansion Lines

Shockwave

Figure 23: Deflected flow expands to follow the surface slope

surface since it has to realign with the surface slope. This expan-
sions also deflect the shockwave angle dowstream generating a
curved shock as schematized in fig. 23.
From this evidence a issue arises about computing the shock an-
gle: it should be computed considering the line tangent at the first
part of the wave attached to the nose rather than considering a
line that fits the shock wave for all its length. For the case of pure
axial flow the result achieved considering the first strategy lead
to best results compared to the second with a calculated angle of
30o instead of 22o, with a theoretical angle given by the graph re-
ported in fig. 1 of ∼ 28o.
The discrepancy of the computed angle from image processing wrt
the angle predicted by the Taylor-Maccol graph can be addressed
to a non-perfect alignment of the camera when taking the schlieren
pictures, together with the incertitude for the detection of the val-
ues on the graph of fig. 1 that has a resolution of 10o for the cone
semiangle and 0.2 for the Mach number.

6.2.2. Inclined Flow

A direct computation of the angles spaced between the shock wave
and the ogive axis on the fig. 25, as reported in fig. 26 using lengths
in pixels, returns values of σ̂top = 22o and σ̂bot = 29o degrees re-

Θ

σ̂top

α

Θtop

σtop

Figure 24: Schematic of the angles for inclined configuration

Angle Computed Value Predicted Value (fig. 1)

α 6°
Θ 16°
Θtop 22°
Θbot 10°
σ̂top 22° -
σtop 28° 30°
σ̂bot 29° -
σbot 22° 20°

Table 4: Summary of computed angles in the schlieren

spectively for the top and bottom shocks. As sketched in fig. 24, the
real angles to be used with the Taylor-Maccol graph are obtained
as in eq. (34). The assumption made here is expected to be valid
only in 2D, while an extension to 3D is not formally rigorous. The
results obtained can nonetheless provide a feeling of the physical
phenomenon. The results are summarized in table 4.

Θtop = Θ+α

σtop = σ̂top +α

Θbot = Θ−α
σbot = σ̂bot −α

(34)

2the image is upside-down due to the optical setup
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Figure 25: Schlieren Image of the ogive at α= 5o2

Figure 26: Schlieren Image of the ogive at α= 5o

Figure 27: Rear recompression of the flow

Expansion Fan

Shockwave

Figure 28: Schematic of the rear recompression of the flow

6.2.3. Rear-part of the ogive

In fig. 27 is possible to see the shock pattern of the rear part of the
ogive. It’s possible to note another set of two shocks just after the
end of the aftbody of the nosecone. Those shocks are caused by the
flow that is turning around the vertical rear-wall of the ogive that
has to realign with the main flow direction causing a compression
and, hence, shocks. The situation is schematized in fig. 28.

6.3. Water Table

As reported in [11], an analogy between the frictionless motion of
shallow water and the isentropic flow of a compressible gas can
be derived for water flowing in a rectangular duct, in this case the
analogue gas should have a specific heat ratio γ = 2, or in a duct
whose dimension are related by eq. (35) (being z, y the physical

13



6.3 Water Table 6 FLOW VISUALIZATION

dimension of the cross-section) 3.

z = C yn (35)

For the particular case of rectangular cross-section duct (for the
hydraulic part), the direct comparison of the continuity equation
of the free-surface water flow and isentropic gas (eq. (36)) leads to
assume that the water depth ς is analogue to the density ρ.

∂ ςu
∂ x
+
∂ ςv
∂ y

= 0

∂ ρu
∂ x

+
∂ ρv
∂ y

= 0
(36)

Moreover if the energy equation for both flows is considered
(eq. (37)), the water depth is also analogue to the isentropic gas
temperature T .

ς+
V 2

2g
= ς0

T +
V 2

2Cp
= T0

(37)

Since in isentropic flow density and temperature are related
by eq. (38), the two analogies can hold together only if γ =
2. The relation between depth and pressure is hence given by
eq. (39).

ρ0

ρ
=
�

T0

T

�
1
γ−1

(38)

p
p0
=
�

ς

ς0

�2

(39)

6.3.1. Estimation of the water depth

The Mach number in the wind tunnel is provided to be M = 3.5.
Considering the isentropic relation that returns the total-pressure-
to-static-pressure ratio given by eq. (40) and again eq. (39) the
right depth ratio is ς0

ς = 8.7334.

3In facts if a general form of the duct cross section is considered (see eq. (35)),
the specific heat ratio does not have to be equal to 2 anymore. The analogue γ
can be tuned to be in analogy with real-existing gases (e.g. with a triangular duct
γ= 1.5)

Figure 29: Validity of the water table analogy

p0

p
=
�

1+
γ− 1

2
M2
�

γ
γ−1

(40)

The idea was to keep the shallow water channel with a depth of
ς = 5 [mm], so the depth of the still water reservoir has been set
to ς0 = 45 [mm].

6.3.2. Validity of the hydraulic analogy

In [12] a figure displaying the validity of the hydraulic analogy in
terms of pressure-ratio is provided and is here reported for refer-
ence in fig. 29. As it’s possible to see in the situation analyzed in
this work, quantitatively speaking, the analogy is not strictly valid.
The best situation would held for a lower Mach number. The qual-
itative analysis of the flow topology can, by the way, be however
performed even if the effective shock angle will be higher in the
water table since, being p

p0
higher, for eq. (40) the Mach number

will be lower leading to a higher shock angle.

6.3.3. Qualitative Flow Pattern Analysis

As reported in the previous section, in fig. 30 is possible to note
how the shock angle is slightly higher than fig. 22. Nonetheless is
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Figure 30: Picture of ogive in the water table

possible to appreciate also the expansion fan at the rear-edges of
the ogive and the two rear shock waves discussed in section 6.2.3.
The shocks in the water table visualization are showing up as solid
thin lines as in the schlieren pictures, but small waves of small
wave-length are appearing as a disturbance. This waves are the
capillary waves typical of the free-surface shallow water scenario.
Moreover the attachment point of shock is not clear since the water
is twirling and climbing the body surface.

Acronyms

AoA Angle of Attack

FOSS Free and Open Source Software

GIMP GNU Image Manipulation Program

wrt with respect to

VKI von Karman Institute

NI National Instruments

DAS Data Acquisition System

Nomenclature

α Angle of Attack

εx ,y angular deflection of a light ray

D drag

L lift

M pitching moment

ρ density

σ shockwave angle

Θ cone or ogive semi-angle

θ angular coordinate

ς water depth in the channel

A axial force

c velocity of light

c0 velocity of light in vacuum

D base caliber of the ogive

F F = L
D

g gravity field

h enthalpy

k Gladstone-Dale factor for refraction

L length of the ogive

m mass

N normal force

n refractive index

p pressure

q∞ free stream dynamic pressure

T temperature

ur radial component of the velocity

V voltage
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